学习模式上的记录之统计篇四 关于excel里添加趋势线和回归统计的R square数值不一致的情况

嫌长不想看:先看自己有没有设置强制截距为0,若实际应用时确实需要强制截距为0,Excel的算法跟Sigmaplot的算法此时不一样,建议使用LINEST函数的结果。

1. 利用Excel计算 R2 的方法

有以下几种方法:
1.1 做散点图添加趋势线
1.2 利用数据栏-数据分析-回归,回归统计中给出 R2 及 adjusted R2 结果
1.3 利用 LINEST 函数,使用时注意选中输出区域,输入公式后,按 Ctrl+Shift+Enter 实现最终输出,示例结果如下图,标黄数据为函数计算出的 R2
excel LINEST函数输出结果
Microsoft官网上给出的了附加回归统计值返回的顺序(对照上图)
附加回归统计值返回的顺序述
1.4 利用 RSQ 函数计算

在使用Python的Matplotlib库进行绘图时,有时会遇到无法添加标签文字或调整线条粗细的问题。以下是一些常见的解决方法: ### 1. 检查代码顺序 确保在绘制图形后立即添加标签和调整线条粗细。例如: ```python import matplotlib.pyplot as plt # 示例数据 x = [1, 2, 3, 4, 5] y = [1, 4, 9, 16, 25] # 绘制图形 plt.plot(x, y, label='y = x^2', linewidth=2) # 添加标题和标签 plt.title('Square Numbers') plt.xlabel('Number') plt.ylabel('Square') # 添加图例 plt.legend() # 显示图形 plt.show() ``` ### 2. 使用关键字参数 在`plt.plot()`函数中使用关键字参数来设置标签和线条粗细: ```python plt.plot(x, y, label='y = x^2', linewidth=2) ``` ### 3. 检查Matplotlib版本 确保使用的是最新版本的Matplotlib,有时旧版本可能存在一些bug。可以通过以下命令更新Matplotlib: ```sh pip install --upgrade matplotlib ``` ### 4. 使用面向对象接口 有时使用面向对象的方法可以更清晰地控制图形元素: ```python fig, ax = plt.subplots() ax.plot(x, y, label='y = x^2', linewidth=2) # 添加标题和标签 ax.set_title('Square Numbers') ax.set_xlabel('Number') ax.set_ylabel('Square') # 添加图例 ax.legend() # 显示图形 plt.show() ``` ### 5. 检查图形元素是否被覆盖 确保没有其他图形元素覆盖了标签或线条。例如,确保没有在同一个位置绘制多个图形。 ### 6. 检查数据范围 有时数据范围过大或过小会导致标签和线条显示不清晰。可以调整数据范围或使用`plt.xlim()`和`plt.ylim()`来调整显示范围。 通过以上方法,应该能够解决在Matplotlib中添加标签文字和调整线条粗细的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值