生物阻抗测量芯片MAX30009测量原理介绍推导【IQ解调】【生物阻抗测量】

#模拟前端芯片 #MAX30009 #混频 #IQ解调 #生物阻抗测量

MAX30009测量原理总体介绍

使用MAX30009可以对生物的阻抗进行测量。其中,芯片的两个引脚可以产生正弦形式的激励,一端流经电极片,注入人体,流经人体阻抗后,通过另一端电极片流回。在这个过程中,由于生物阻抗的存在,会在流经的区域产生电势差。通过测量该电势差,再结合已知的正弦形式的激励源,可以求解得到最终的生物阻抗。生物阻抗的组成为阻抗绝对值和相角,使用正弦激励流经人体得到的电压是一个带有生物阻抗特征的正弦信号(若把人体设为Cole模型),其幅值、相位均发生了变化。得到的正弦信号需要经过解调以获得直流形式的值,方便对阻抗和相角进行计算。通过使用混频和低通滤波的方式,可以方便地实现这一点。下面将对其中的数学原理进行推导和计算。
MAX30009芯片手册中对其原理的描述框图

生物阻抗测量的数学推导

给定的正弦形式的激励电流 I ( t ) I(t) I(t) 为:
I ( t ) = A i cos ⁡ ( 2 π f i t + ϕ i ) = R e [ A i e j ω + ϕ i ] = A i ∠ ϕ i I(t) = A_i \cos(2\pi f_i t + \phi_i) =Re[A_ie^{j\omega +\phi_i}] =A_i \angle \phi_i I(t)=Aicos(2πfit+ϕi)=Re[Aie+ϕi]=Aiϕi
其中, ω = 2 π f i t \omega =2\pi f_it ω=2πfit。电流流经生物阻抗 Z Z Z,得到电压 U ( t ) U(t) U(t)。生物阻抗可以表示为复数形式:
Z = R ( cos ⁡ θ + i sin ⁡ θ ) = R ∠ θ Z= R(\cos\theta + i\sin\theta) = R\angle \theta Z=R(cosθ+isinθ)=Rθ
电压 U ( t ) U(t) U(t) 是电流 I ( t ) I(t) I(t) 和阻抗 Z Z Z 的乘积,可以对电压 U ( t ) U(t) U(t)作假设如下:
U ( t ) = A u cos ⁡ ( 2 π f u t + ϕ u ) = R e [ A u e j ω + ϕ u ] = A u ∠ ϕ u U\left( t \right) =A_u\cos \left( 2\pi f_ut+\phi _u \right) =Re\left[ A_ue^{j\omega +\phi _u} \right] =A_u\angle \phi _u U(t)=Aucos(2πfut+ϕu)=Re[Aue+ϕu]=Auϕu
其中,由于电流流经生物阻抗其频率不发生变化,故有 f i = f u f_i=f_u fi=fu;由欧姆定律,可以得到
Z = U ( t ) I ( t ) = A u ∠ ϕ u A i ∠ ϕ i = A u A i ∠ ( ϕ u − ϕ i ) Z=\frac{U\left( t \right)}{I\left( t \right)}=\frac{A_u\angle \phi _u}{A_i\angle \phi _i}=\frac{A_u}{A_i}\angle \left( \phi _u-\phi _i \right) Z=I(t)U(t)=AiϕiAuϕu=AiAu(ϕuϕi)
故这里的阻抗绝对值 R R R和相角 θ \theta θ可以得到表达式:
{ R = A u A i θ = ( ϕ u − ϕ i ) \left\{ \begin{array}{l} R=\frac{A_u}{A_i}\\ \theta =\left( \phi _u-\phi _i \right)\\ \end{array} \right. { R=AiAuθ=(ϕuϕi)
电流 I ( t ) I(t) I(t)流经生物阻抗 Z Z Z得到电压 U ( t ) U(t) U(t) ,电压 U ( t ) U(t) U(t)将经过 I Q IQ IQ解调(具体为方波正交解调)得到其阻抗和相位,具体如下:
首先,流经生物阻抗的电压 U ( t ) U(t) U(t)将和一方波信号 y 1 ( t ) y_1\left( t \right) y1(t)进行调制;方波信号可以作傅里叶展开如下:
y 1 ( t ) = ∑ n = 1 , 3 , 5 , . . . ∞ 4 A y n π sin ⁡ ( 2 π n f y t + ϕ y 1 ) y_1\left( t \right) =\sum_{n=1,3,5,...}^{\infty}{\frac{4A_{y}}{n\pi}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) y1(t)=n=1,3,5,...4Aysin(2πnfyt+ϕy1)
这里的 A y A_y Ay代表方波信号的幅值, f y f_y fy代表其频率, ϕ y 1 \phi_{y_1} ϕy1代表其相位,正常情况下对于该标准形式的方波信号, ϕ y 1 \phi_{y_1} ϕy1为0。
U ( t ) U(t) U(t) y 1 ( t ) y_1(t)

谁不知道欧姆定律?对于直流电压来说,它表述为通过导体两点之间的电流与这两点之间的电压成正比。换言之,导体的电阻是恒定的,与电流无关。对于交流电压来说,情况则完全改变了,而且变得更加复杂。电阻变为阻抗,其定义为电压与电流在频域中的比率。幅度(或实部)代表电压和电流之间的比率,而相位(或虚部)则是电压与电流之间的相移值。   在医疗行业中有许多应用阻抗测量的用例。该技术可用于广泛的应用,例如获取某些特定人体参数、检测疾病或分析血液或唾液等人体液体。虽然这些应用的共同之处是进行阻抗测量,但每个应用又都有各自的一系列关键要求。   ADI公司了开发了一个称为AD594x系列的新型阻抗测量芯片。该芯片非常精确,并具有多种功率模式,可实现按需测量或连续测量。在本文中,您将了解该芯片的特性及其主要应用。   简介和重点 用芯片阻抗测量的技术相对较新。大约15年前,ADI公司推出了AD5933/AD5934,这是首个阻抗分析芯片系列。第二代产品ADuCM350于2015年推出。这两个系列目前仍在大量销售,但对于目前更新的应用来说,它们并不总是最佳解决方案。随着可穿戴设备和电池供电系统成为发展趋势,主要挑战是在尽可能小的外形尺寸内满足所需的性能水平,并且功耗极低。AD594x旨在支持当今的可穿戴市场,并满足所有关键要求,包括高精度、小尺寸和低功耗。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值