生物阻抗测量芯片MAX30009测量原理介绍推导【IQ解调】【生物阻抗测量】

#模拟前端芯片 #MAX30009 #混频 #IQ解调 #生物阻抗测量

MAX30009测量原理总体介绍

使用MAX30009可以对生物的阻抗进行测量。其中,芯片的两个引脚可以产生正弦形式的激励,一端流经电极片,注入人体,流经人体阻抗后,通过另一端电极片流回。在这个过程中,由于生物阻抗的存在,会在流经的区域产生电势差。通过测量该电势差,再结合已知的正弦形式的激励源,可以求解得到最终的生物阻抗。生物阻抗的组成为阻抗绝对值和相角,使用正弦激励流经人体得到的电压是一个带有生物阻抗特征的正弦信号(若把人体设为Cole模型),其幅值、相位均发生了变化。得到的正弦信号需要经过解调以获得直流形式的值,方便对阻抗和相角进行计算。通过使用混频和低通滤波的方式,可以方便地实现这一点。下面将对其中的数学原理进行推导和计算。
MAX30009芯片手册中对其原理的描述框图

生物阻抗测量的数学推导

给定的正弦形式的激励电流 I ( t ) I(t) I(t) 为:
I ( t ) = A i cos ⁡ ( 2 π f i t + ϕ i ) = R e [ A i e j ω + ϕ i ] = A i ∠ ϕ i I(t) = A_i \cos(2\pi f_i t + \phi_i) =Re[A_ie^{j\omega +\phi_i}] =A_i \angle \phi_i I(t)=Aicos(2πfit+ϕi)=Re[Aie+ϕi]=Aiϕi
其中, ω = 2 π f i t \omega =2\pi f_it ω=2πfit。电流流经生物阻抗 Z Z Z,得到电压 U ( t ) U(t) U(t)。生物阻抗可以表示为复数形式:
Z = R ( cos ⁡ θ + i sin ⁡ θ ) = R ∠ θ Z= R(\cos\theta + i\sin\theta) = R\angle \theta Z=R(cosθ+isinθ)=Rθ
电压 U ( t ) U(t) U(t) 是电流 I ( t ) I(t) I(t) 和阻抗 Z Z Z 的乘积,可以对电压 U ( t ) U(t) U(t)作假设如下:
U ( t ) = A u cos ⁡ ( 2 π f u t + ϕ u ) = R e [ A u e j ω + ϕ u ] = A u ∠ ϕ u U\left( t \right) =A_u\cos \left( 2\pi f_ut+\phi _u \right) =Re\left[ A_ue^{j\omega +\phi _u} \right] =A_u\angle \phi _u U(t)=Aucos(2πfut+ϕu)=Re[Aue+ϕu]=Auϕu
其中,由于电流流经生物阻抗其频率不发生变化,故有 f i = f u f_i=f_u fi=fu;由欧姆定律,可以得到
Z = U ( t ) I ( t ) = A u ∠ ϕ u A i ∠ ϕ i = A u A i ∠ ( ϕ u − ϕ i ) Z=\frac{U\left( t \right)}{I\left( t \right)}=\frac{A_u\angle \phi _u}{A_i\angle \phi _i}=\frac{A_u}{A_i}\angle \left( \phi _u-\phi _i \right) Z=I(t)U(t)=AiϕiAuϕu=AiAu(ϕuϕi)
故这里的阻抗绝对值 R R R和相角 θ \theta θ可以得到表达式:
{ R = A u A i θ = ( ϕ u − ϕ i ) \left\{ \begin{array}{l} R=\frac{A_u}{A_i}\\ \theta =\left( \phi _u-\phi _i \right)\\ \end{array} \right. {R=AiAuθ=(ϕuϕi)
电流 I ( t ) I(t) I(t)流经生物阻抗 Z Z Z得到电压 U ( t ) U(t) U(t) ,电压 U ( t ) U(t) U(t)将经过 I Q IQ IQ解调(具体为方波正交解调)得到其阻抗和相位,具体如下:
首先,流经生物阻抗的电压 U ( t ) U(t) U(t)将和一方波信号 y 1 ( t ) y_1\left( t \right) y1(t)进行调制;方波信号可以作傅里叶展开如下:
y 1 ( t ) = ∑ n = 1 , 3 , 5 , . . . ∞ 4 A y n π sin ⁡ ( 2 π n f y t + ϕ y 1 ) y_1\left( t \right) =\sum_{n=1,3,5,...}^{\infty}{\frac{4A_{y}}{n\pi}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) y1(t)=n=1,3,5,...4Aysin(2πnfyt+ϕy1)
这里的 A y A_y Ay代表方波信号的幅值, f y f_y fy代表其频率, ϕ y 1 \phi_{y_1} ϕy1代表其相位,正常情况下对于该标准形式的方波信号, ϕ y 1 \phi_{y_1} ϕy1为0。
U ( t ) U(t) U(t) y 1 ( t ) y_1(t) y1(t)相乘时,可以得到乘积 K ( t ) K\left( t \right) K(t) 如:
K ( t ) = 4 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n sin ⁡ ( 2 π n f y t + ϕ y 1 ) cos ⁡ ( 2 π f u t + ϕ u ) K\left( t \right) =\frac{4A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) \cos \left( 2\pi f_ut+\phi _u \right) K(t)=π4AuAyn=1,3,5,...n1sin(2πnfyt+ϕy1)cos(2πfut+ϕu)
使用三角函数的乘积转化为和的公式:
{ sin ⁡ α ⋅ cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] sin ⁡ α ⋅ sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \left\{ \begin{array}{l} \sin \alpha \cdot \cos \beta =\frac{1}{2}\left[ \sin \left( \alpha +\beta \right) +\sin \left( \alpha -\beta \right) \right]\\ \sin \alpha \cdot \sin \beta =\frac{1}{2}\left[ \cos \left( \alpha -\beta \right) -\cos \left( \alpha +\beta \right) \right]\\ \end{array} \right. {sinαcosβ=21[sin(α+β)+sin(αβ)]sinαsinβ=21[cos(αβ)cos(α+β)]
可以得到
K ( t ) = 4 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n sin ⁡ ( 2 π n f y t + ϕ y 1 ) cos ⁡ ( 2 π f u t + ϕ u ) = 2 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( sin ⁡ ( 2 π n f y t + ϕ y 1 + 2 π f u t + ϕ u ) + sin ⁡ ( 2 π n f y t + ϕ y 1 − 2 π f u t + ϕ u ) ) = 2 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( sin ⁡ ( 2 π t ( n f y + f u ) + ϕ y 1 + ϕ u ) + sin ⁡ ( 2 π t ( n f y − f u ) + ϕ y 1 + ϕ u ) ) K\left( t \right) =\frac{4A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) \cos \left( 2\pi f_ut+\phi _u \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( \sin \left( 2\pi nf_yt+\phi _{y_1}+2\pi f_ut+\phi _u \right) +\sin \left( 2\pi nf_yt+\phi _{y_1}-2\pi f_ut+\phi _u \right) \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( \sin \left( 2\pi t\left( nf_y+f_u \right) +\phi _{y_1}+\phi _u \right) +\sin \left( 2\pi t\left( nf_y-f_u \right) +\phi _{y_1}+\phi _u \right) \right) K(t)=π4AuAyn=1,3,5,...n1sin(2πnfyt+ϕy1)cos(2πfut+ϕu)=π2AuAyn=1,3,5,...n1(sin(2πnfyt+ϕy1+2πfut+ϕu)+sin(2πnfyt+ϕy12πfut+ϕu))=π2AuAyn=1,3,5,...n1(sin(2πt(nfy+fu)+ϕy1+ϕu)+sin(2πt(nfyfu)+ϕy1+ϕu))
化简得
K ( t ) = 2 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( sin ⁡ ( 2 π t ( n f y + f u ) + ϕ y 1 + ϕ u ) + sin ⁡ ( 2 π t ( n f y − f u ) + ϕ y 1 + ϕ u ) ) K\left( t \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( \sin \left( 2\pi t\left( nf_y+f_u \right) +\phi _{y_1}+\phi _u \right) +\sin \left( 2\pi t\left( nf_y-f_u \right) +\phi _{y_1}+\phi _u \right) \right) K(t)=π2AuAyn=1,3,5,...n1(sin(2πt(nfy+fu)+ϕy1+ϕu)+sin(2πt(nfyfu)+ϕy1+ϕu))
由于用于调制的方波 y 1 ( t ) y_1\left( t \right) y1(t)的频率 f y f_y fy与电压 U ( t ) U(t) U(t)的频率 f u f_u fu相同,最终得到的 K ( t ) K\left( t \right) K(t)一定会有一个直流分量,即当 n = 1 n=1 n=1时, n f y − f u nf_y-f_u nfyfu恰好等于0,此时会留下一个直流分量。假如信号 K ( t ) K\left( t \right) K(t) 在该信号经过一个频率小于 f y f_y fy的低通滤波器(显然,除了直流分量之外,其余的分量最小的频率为 f y f_y fy)之后,可以得到直流分量 D ( t ) D\left( t \right) D(t) 为:
D ( t ) = 2 A u A y π sin ⁡ ( ϕ y 1 + ϕ u ) D\left( t \right) =\frac{2A_uA_y}{\pi}\sin \left( \phi _{y_1}+\phi _u \right) D(t)=π2AuAysin(ϕy1+ϕu)
其中, ϕ y 1 \phi _{y_1} ϕy1是已知量,在这里的值为0(此时的 y 1 ( t ) y_1\left( t \right) y1(t)为一没有相位偏移的方波信号;方波 A y A_y Ay是已知量,代表方波的幅值;这个表达式包含了未知量 A u A_u Au ϕ u \phi _u ϕu,单从一个公式无法解出具体的值。此时,可以设一个正交的量为 I 1 I_1 I1,让已知量带入,得到 I 1 I_1 I1结果如下:
I 1 = π 2 A y D ( t ) = A u sin ⁡ ( ϕ u ) I_1=\frac{\pi}{2A_y}D\left( t \right) =A_u\sin \left( \phi _u \right) I1=2AyπD(t)=Ausin(ϕu)
除了方波正交量 y 1 ( t ) y_1\left( t \right) y1(t)之外,还有另一个具有90度相位偏移的方波信号 y 2 ( t ) y_2\left( t \right) y2(t),其傅里叶展开如下:
f ( t ) = ∑ n = 1 , 3 , 5 , . . . ∞ 4 A y 2 n π ( − 1 ) n − 1 2 cos ⁡ ( 2 π n f y 2 t ) f\left( t \right) =\sum_{n=1,3,5,...}^{\infty}{\frac{4A_{y_2}}{n\pi}}\left( -1 \right) ^{\frac{n-1}{2}}\cos \left( 2\pi nf_{\boldsymbol{y}_2}t \right) f(t)=n=1,3,5,...4Ay2(1)2n1cos(2πnfy2t)
该方波信号的傅里叶展开公式推导,可以参考[[具有90度相位偏移的方波信号的傅里叶级数推导]]。经过与
U ( t ) = A u cos ⁡ ( 2 π f u t + ϕ u ) U\left( t \right) =A_u\cos \left( 2\pi f_ut+\phi _u \right) U(t)=Aucos(2πfut+ϕu)
的相乘,可以得到 K 2 ( t ) K_2\left( t \right) K2(t)
K 2 ( t ) = 4 A u A y 2 π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( − 1 ) n − 1 2 cos ⁡ ( 2 π n f y 2 t ) cos ⁡ ( 2 π f u t + ϕ u ) K_2\left( t \right) =\frac{4A_uA_{y_2}}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\cos \left( 2\pi nf_{y_2}t \right) \cos \left( 2\pi f_ut+\phi _u \right) K2(t)=π4AuAy2n=1,3,5,...n1(1)2n1cos(2πnfy2t)cos(2πfut+ϕu)
通过积化和差公式
{ cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \left\{ \begin{array}{l} \cos \alpha \cos \beta =\frac{1}{2}\left[ \cos \left( \alpha +\beta \right) +\cos \left( \alpha -\beta \right) \right]\\ \sin \alpha \sin \beta =-\frac{1}{2}\left[ \cos \left( \alpha +\beta \right) -\cos \left( \alpha -\beta \right) \right]\\ \end{array} \right. {cosαcosβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]
可以得到 K 2 ( t ) K_2\left( t \right) K2(t)
K 2 ( t ) = 4 A u A y 2 π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( − 1 ) n − 1 2 cos ⁡ ( 2 π n f y 2 t ) cos ⁡ ( 2 π f u t + ϕ u ) = 2 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( − 1 ) n − 1 2 [ cos ⁡ ( 2 π n f y 2 t + 2 π f u t + ϕ u ) + cos ⁡ ( 2 π n f y 2 t − ( 2 π f u t + ϕ u ) ) ] = 2 A u A y π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( − 1 ) n − 1 2 [ cos ⁡ ( 2 π t ( n f y 2 + f u ) + ϕ u ) + cos ⁡ ( 2 π t ( n f y 2 − f u ) − ϕ u ) ] K_2\left( t \right) =\frac{4A_uA_{y_2}}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\cos \left( 2\pi nf_{y_2}t \right) \cos \left( 2\pi f_ut+\phi _u \right) =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\left[ \cos \left( 2\pi nf_{y_2}t+2\pi f_ut+\phi _u \right) +\cos \left( 2\pi nf_{y_2}t-\left( 2\pi f_ut+\phi _u \right) \right) \right] =\frac{2A_uA_y}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\left[ \cos \left( 2\pi t\left( nf_{y_2}+f_u \right) +\phi _u \right) +\cos \left( 2\pi t\left( nf_{y_2}-f_u \right) -\phi _u \right) \right] K2(t)=π4AuAy2n=1,3,5,...n1(1)2n1cos(2πnfy2t)cos(2πfut+ϕu)=π2AuAyn=1,3,5,...n1(1)2n1[cos(2πnfy2t+2πfut+ϕu)+cos(2πnfy2t(2πfut+ϕu))]=π2AuAyn=1,3,5,...n1(1)2n1[cos(2πt(nfy2+fu)+ϕu)+cos(2πt(nfy2fu)ϕu)]
化简可得其表达式为
K 2 ( t ) = 2 A u A y 2 π ∑ n = 1 , 3 , 5 , . . . ∞ 1 n ( − 1 ) n − 1 2 [ cos ⁡ ( 2 π t ( n f y 2 + f u ) + ϕ u ) + cos ⁡ ( 2 π t ( n f y 2 − f u ) − ϕ u ) ] K_2\left( t \right) =\frac{2A_uA_{y_2}}{\pi}\sum_{n=1,3,5,...}^{\infty}{\frac{1}{n}}\left( -1 \right) ^{\frac{n-1}{2}}\left[ \cos \left( 2\pi t\left( nf_{y_2}+f_u \right) +\phi _u \right) +\cos \left( 2\pi t\left( nf_{y_2}-f_u \right) -\phi _u \right) \right] K2(t)=π2AuAy2n=1,3,5,...n1(1)2n1[cos(2πt(nfy2+fu)+ϕu)+cos(2πt(nfy2fu)ϕu)]
同理,上式也存在一个直流分量。当且仅当 n = 1 \text{n}=1 n=1时,由于 f y 2 = f u f_{y_2}=f_u fy2=fu,故此时可以得到该直流分量为:
D 2 ( t ) = 2 A u A y 2 π cos ⁡ ( ϕ u ) D_2\left( t \right) =\frac{2A_uA_{y_2}}{\pi}\cos \left( \phi _u \right) D2(t)=π2AuAy2cos(ϕu)
方波 A y 2 A_{y_2} Ay2是已知量,与 A y A_y Ay相同,代表方波的幅值。故可以设 Q 1 Q_1 Q1值如下
Q 1 = π 2 A y D 2 ( t ) = A u cos ⁡ ( ϕ u ) Q_1=\frac{\pi}{2A_y}D_2\left( t \right) =A_u\cos \left( \phi _u \right) Q1=2AyπD2(t)=Aucos(ϕu)
由这里的 I 1 I_1 I1 Q 1 Q_1 Q1的值可以计算得到未知量 A u A_u Au ϕ u \phi _u ϕu,如下
{ A u = I 1 2 + Q 1 2 ϕ u = arctan ⁡ ( I 1 Q 1 ) \left\{ \begin{array}{l} A_u=\sqrt{I_{1}^{2}+Q_{1}^{2}}\\ \phi _u=\arctan \left( \frac{I_1}{Q_1} \right)\\ \end{array} \right. {Au=I12+Q12 ϕu=arctan(Q1I1)

  • 29
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值