#模拟前端芯片 #MAX30009 #混频 #IQ解调 #生物阻抗测量
MAX30009测量原理总体介绍
使用MAX30009可以对生物的阻抗进行测量。其中,芯片的两个引脚可以产生正弦形式的激励,一端流经电极片,注入人体,流经人体阻抗后,通过另一端电极片流回。在这个过程中,由于生物阻抗的存在,会在流经的区域产生电势差。通过测量该电势差,再结合已知的正弦形式的激励源,可以求解得到最终的生物阻抗。生物阻抗的组成为阻抗绝对值和相角,使用正弦激励流经人体得到的电压是一个带有生物阻抗特征的正弦信号(若把人体设为Cole模型),其幅值、相位均发生了变化。得到的正弦信号需要经过解调以获得直流形式的值,方便对阻抗和相角进行计算。通过使用混频和低通滤波的方式,可以方便地实现这一点。下面将对其中的数学原理进行推导和计算。
生物阻抗测量的数学推导
给定的正弦形式的激励电流 I ( t ) I(t) I(t) 为:
I ( t ) = A i cos ( 2 π f i t + ϕ i ) = R e [ A i e j ω + ϕ i ] = A i ∠ ϕ i I(t) = A_i \cos(2\pi f_i t + \phi_i) =Re[A_ie^{j\omega +\phi_i}] =A_i \angle \phi_i I(t)=Aicos(2πfit+ϕi)=Re[Aiejω+ϕi]=Ai∠ϕi
其中, ω = 2 π f i t \omega =2\pi f_it ω=2πfit。电流流经生物阻抗 Z Z Z,得到电压 U ( t ) U(t) U(t)。生物阻抗可以表示为复数形式:
Z = R ( cos θ + i sin θ ) = R ∠ θ Z= R(\cos\theta + i\sin\theta) = R\angle \theta Z=R(cosθ+isinθ)=R∠θ
电压 U ( t ) U(t) U(t) 是电流 I ( t ) I(t) I(t) 和阻抗 Z Z Z 的乘积,可以对电压 U ( t ) U(t) U(t)作假设如下:
U ( t ) = A u cos ( 2 π f u t + ϕ u ) = R e [ A u e j ω + ϕ u ] = A u ∠ ϕ u U\left( t \right) =A_u\cos \left( 2\pi f_ut+\phi _u \right) =Re\left[ A_ue^{j\omega +\phi _u} \right] =A_u\angle \phi _u U(t)=Aucos(2πfut+ϕu)=Re[Auejω+ϕu]=Au∠ϕu
其中,由于电流流经生物阻抗其频率不发生变化,故有 f i = f u f_i=f_u fi=fu;由欧姆定律,可以得到
Z = U ( t ) I ( t ) = A u ∠ ϕ u A i ∠ ϕ i = A u A i ∠ ( ϕ u − ϕ i ) Z=\frac{U\left( t \right)}{I\left( t \right)}=\frac{A_u\angle \phi _u}{A_i\angle \phi _i}=\frac{A_u}{A_i}\angle \left( \phi _u-\phi _i \right) Z=I(t)U(t)=Ai∠ϕiAu∠ϕu=AiAu∠(ϕu−ϕi)
故这里的阻抗绝对值 R R R和相角 θ \theta θ可以得到表达式:
{ R = A u A i θ = ( ϕ u − ϕ i ) \left\{ \begin{array}{l} R=\frac{A_u}{A_i}\\ \theta =\left( \phi _u-\phi _i \right)\\ \end{array} \right. {
R=AiAuθ=(ϕu−ϕi)
电流 I ( t ) I(t) I(t)流经生物阻抗 Z Z Z得到电压 U ( t ) U(t) U(t) ,电压 U ( t ) U(t) U(t)将经过 I Q IQ IQ解调(具体为方波正交解调)得到其阻抗和相位,具体如下:
首先,流经生物阻抗的电压 U ( t ) U(t) U(t)将和一方波信号 y 1 ( t ) y_1\left( t \right) y1(t)进行调制;方波信号可以作傅里叶展开如下:
y 1 ( t ) = ∑ n = 1 , 3 , 5 , . . . ∞ 4 A y n π sin ( 2 π n f y t + ϕ y 1 ) y_1\left( t \right) =\sum_{n=1,3,5,...}^{\infty}{\frac{4A_{y}}{n\pi}}\sin \left( 2\pi nf_yt+\phi _{y_1} \right) y1(t)=n=1,3,5,...∑∞nπ4Aysin(2πnfyt+ϕy1)
这里的 A y A_y Ay代表方波信号的幅值, f y f_y fy代表其频率, ϕ y 1 \phi_{y_1} ϕy1代表其相位,正常情况下对于该标准形式的方波信号, ϕ y 1 \phi_{y_1} ϕy1为0。
当 U ( t ) U(t) U(t)和 y 1 ( t ) y_1(t)