Sklearn 将CountVectorizer和TfidfVectorizer相结合

# user_list  用户文本
# user_lable 用户标签

x_train, x_test, y_train, y_test = train_test_split(user_list, user_label, test_size=0.25, random_state = 0)

count = CountVectorizer(stop_words='english')
train_count = count.fit_transform(x_train)
test_count = count.transform(x_test)

tfidf = TfidfVectorizer(stop_words='english')
train_tfidf = tfidf.fit_transform(x_train)
tes_tfidf = tfidf.transform(x_test)

x_train = scipy.sparse.hstack([train_count, train_tfidf])
x_test = scipy.sparse.hstack([test_count, tes_tfidf])

 

scipy.sparse.hstack 横向合并系数矩阵

如果训练集和测试集都使用 fit_transform()函数,predict()函数会报错

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值