机器学习基础-Task3 EM算法

EM算法是机器学习十大算法之一,它很简单,但是也同样很有深度,简单是因为它就分两步求解问题:
E步:求期望(expectation)
M步:求极大(maximization)
深度在于它的数学推理涉及到比较繁杂的概率公式等。
EM算法引入
概率模型有时候既含有观测变量,又含有隐变量或潜在变量,如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计方法估计模型参数,但是当模型含有隐变量时,就不能简单的使用这些方法,EM算法就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法,我们讨论极大似然估计,极大后验概率估计与其类似。
高斯混合分布
EM算法的一个重要应用场景就是高斯混合模型的参数估计。高斯混合模型就是由多个高斯模型组合在一起的混合模型(可以理解为多个高斯分布函数的线性组合,理论上高斯混合模型是可以拟合任意类型的分布)。

混合高斯分布模型
EM算法更多是一种思想,用概率来解决问题的一种方法,具体的代码看自己选用模型,所以并没有通用的模型,本此代码主要是讲解混合高斯分布模型的。
这其中的M步 完全按照了公式来计算。

import numpy as np
import random
import math
import time
'''
数据集:伪造数据集(两个高斯分布混合)
数据集长度:1000
------------------------------
运行结果:
----------------------------
the Parameters set is:
alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0
----------------------------
the Parameters predict is:
alpha0:0.4, mu0:0.6, sigmod0:-1.7, alpha1:0.7, mu1:0.7, sigmod1:0.9
----------------------------
'''
def loadData(mu0, sigma0, mu1, sigma1, alpha0, alpha1):
    '''
    初始化数据集
    这里通过服从高斯分布的随机函数来伪造数据集
    :param mu0: 高斯0的均值
    :param sigma0: 高斯0的方差
    :param mu1: 高斯1的均值
    :param sigma1: 高斯1的方差
    :param alpha0: 高斯0的系数
    :param alpha1: 高斯1的系数
    :return: 混合了两个高斯分布的数据
    '''
    # 定义数据集长度为1000
    length = 1000
    # 初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来
    # 满足alpha的作用
    data0 = np.random.normal(mu0, sigma0, int(length * alpha0))
    # 第二个高斯分布的数据
    data1 = np.random.normal(mu1, sigma1, int(length * alpha1))
    # 初始化总数据集
    # 两个高斯分布的数据混合后会放在该数据集中返回
    dataSet = []
    # 将第一个数据集的内容添加进去
    dataSet.extend(data0)
    # 添加第二个数据集的数据
    dataSet.extend(data1)
    # 对总的数据集进行打乱(其实不打乱也没事,只不过打乱一下直观上让人感觉已经混合了
    # 读者可以将下面这句话屏蔽以后看看效果是否有差别)
    random.shuffle(dataSet)
    #返回伪造好的数据集
    return dataSet
def E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1):
    '''
    EM算法中的E步
    依据当前模型参数,计算分模型k对观数据y的响应度
    :param dataSetArr: 可观测数据y
    :param alpha0: 高斯模型0的系数
    :param mu0: 高斯模型0的均值
    :param sigmod0: 高斯模型0的方差
    :param alpha1: 高斯模型1的系数
    :param mu1: 高斯模型1的均值
    :param sigmod1: 高斯模型1的方差
    :return: 两个模型各自的响应度
    '''
    # 计算y0的响应度
    # 先计算模型0的响应度的分子
    gamma0 = alpha0 * calcGauss(dataSetArr, mu0, sigmod0)
    #print("gamma0=",gamma0.shape) # 1000, 维向量
    # 模型1响应度的分子
    gamma1 = alpha1 * calcGauss(dataSetArr, mu1, sigmod1)
    # 两者相加为E步中的分布
    sum = gamma0 + gamma1
    # 各自相除,得到两个模型的响应度
    gamma0 = gamma0 / sum
    gamma1 = gamma1 / sum
    # 返回两个模型响应度
    return gamma0, gamma1
def M_step(muo, mu1, gamma0, gamma1, dataSetArr):
    # 依据算法9.2计算各个值
    # 这里没什么花样,对照书本公式看看这里就好了  
    # np.dot 点积:[1,2] [2,3] = [2,6]
    mu0_new = np.dot(gamma0, dataSetArr) / np.sum(gamma0)
    mu1_new = np.dot(gamma1, dataSetArr) / np.sum(gamma1)
    # math.sqrt  平方根 
    sigmod0_new = math.sqrt(np.dot(gamma0, (dataSetArr - muo)**2) / np.sum(gamma0))
    sigmod1_new = math.sqrt(np.dot(gamma1, (dataSetArr - mu1)**2) / np.sum(gamma1))
    alpha0_new = np.sum(gamma0) / len(gamma0)
    alpha1_new = np.sum(gamma1) / len(gamma1)
    # 将更新的值返回
    return mu0_new, mu1_new, sigmod0_new, sigmod1_new, alpha0_new, alpha1_new
## 训练主函数
def EM_Train(dataSetList, iter=500):
    '''
    根据EM算法进行参数估计
    算法依据“9.3.2 高斯混合模型参数估计的EM算法” 算法9.2
    :param dataSetList:数据集(可观测数据)
    :param iter: 迭代次数
    :return: 估计的参数
    '''
    # 将可观测数据y转换为数组形式,主要是为了方便后续运算
    dataSetArr = np.array(dataSetList)
    # 步骤1:对参数取初值,开始迭代
    alpha0 = 0.5
    mu0 = 0
    sigmod0 = 1
    alpha1 = 0.5
    mu1 = 1
    sigmod1 = 1
    # 开始迭代
    step = 0
    while (step < iter):
        # 每次进入一次迭代后迭代次数加1
        step += 1
        # 步骤2:E步:依据当前模型参数,计算分模型k对观测数据y的响应度
        gamma0, gamma1 = E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1)
        # 步骤3:M步
        mu0, mu1, sigmod0, sigmod1, alpha0, alpha1 = M_step(mu0, mu1, gamma0, gamma1, dataSetArr)
    # 迭代结束后将更新后的各参数返回
    return alpha0, mu0, sigmod0, alpha1, mu1, sigmod1
if __name__ == '__main__':
    start = time.time()
    # 设置两个高斯模型进行混合,这里是初始化两个模型各自的参数
    # 见“9.3 EM算法在高斯混合模型学习中的应用”
    # alpha是“9.3.1 高斯混合模型” 定义9.2中的系数α
    # mu0是均值μ
    # sigmod是方差σ
    # 在设置上两个alpha的和必须为1,其他没有什么具体要求,符合高斯定义就可以
    alpha0 = 0.3  # 系数α
    mu0 = -2  # 均值μ
    sigmod0 = 0.5  # 方差σ
    alpha1 = 0.7  # 系数α
    mu1 = 0.5  # 均值μ
    sigmod1 = 1  # 方差σ
    # 初始化数据集
    dataSetList = loadData(mu0, sigmod0, mu1, sigmod1, alpha0, alpha1)
    #打印设置的参数
    print('---------------------------')
    print('the Parameters set is:')
    print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (
        alpha0, alpha1, mu0, mu1, sigmod0, sigmod1
    ))
    # 开始EM算法,进行参数估计
    alpha0, mu0, sigmod0, alpha1, mu1, sigmod1 = EM_Train(dataSetList)
    # 打印参数预测结果
    print('----------------------------')
    print('the Parameters predict is:')
    print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (
        alpha0, alpha1, mu0, mu1, sigmod0, sigmod1
    ))
    # 打印时间
    print('----------------------------')
    print('time span:', time.time() - start)
#M步 主要计算内容
#这一步骤主要是对Q函数求导后的数据进行计算,利用了E步
import math
import copy
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#生成随机数据,4个高斯模型
def generate_data(sigma,N,mu1,mu2,mu3,mu4,alpha):
    global X                  #可观测数据集
    X = np.zeros((N, 2))       # 初始化X,2行N列。2维数据,N个样本
    X=np.matrix(X)
    global mu                 #随机初始化mu1,mu2,mu3,mu4
    mu = np.random.random((4,2))
    mu=np.matrix(mu)
    global excep              #期望第i个样本属于第j个模型的概率的期望
    excep=np.zeros((N,4))
    global alpha_             #初始化混合项系数
    alpha_=[0.25,0.25,0.25,0.25]
    for i in range(N):
        if np.random.random(1) < 0.1:  # 生成0-1之间随机数
            X[i,:]  = np.random.multivariate_normal(mu1, sigma, 1)     #用第一个高斯模型生成2维数据
        elif 0.1 <= np.random.random(1) < 0.3:
            X[i,:] = np.random.multivariate_normal(mu2, sigma, 1)      #用第二个高斯模型生成2维数据
        elif 0.3 <= np.random.random(1) < 0.6:
            X[i,:] = np.random.multivariate_normal(mu3, sigma, 1)      #用第三个高斯模型生成2维数据
        else:
            X[i,:] = np.random.multivariate_normal(mu4, sigma, 1)      #用第四个高斯模型生成2维数据
    print("可观测数据:\n",X)       #输出可观测样本
    print("初始化的mu1,mu2,mu3,mu4:",mu)      #输出初始化的mu
# E 期望
#  \hat{\gamma_{jk}}
def e_step(sigma,k,N):
    global X
    global mu
    global excep
    global alpha_
    for i in range(N):
        denom=0
        for j in range(0,k):
            #  sigma.I 表示矩阵的逆矩阵
            # np.transpose :矩阵转置   np.linalg.det():矩阵求行列式
            denom += alpha_[j]*  math.exp(-(X[i,:]-mu[j,:])*sigma.I*np.transpose(X[i,:]-mu[j,:]))  /np.sqrt(np.linalg.det(sigma))       #分母
        for j in range(0,k):
            numer = math.exp(-(X[i,:]-mu[j,:])*sigma.I*np.transpose(X[i,:]-mu[j,:]))/np.sqrt(np.linalg.det(sigma))        #分子
            excep[i,j]=alpha_[j]*numer/denom      #求期望
    print("隐藏变量:\n",excep) 
def m_step(k,N):
    global excep
    global X
    global alpha_
    for j in range(0,k):
        denom=0   #分母
        numer=0   #分子
        for i in range(N):
            numer += excep[i,j]*X[i,:]
            denom += excep[i,j]
        mu[j,:] = numer/denom    #求均值
        alpha_[j]=denom/N        #求混合项系数
        #     #可视化结果
def plotShow():
    # 画生成的原始数据
    plt.subplot(221)
    plt.scatter(X[:,0].tolist(), X[:,1].tolist(),c='b',s=25,alpha=0.4,marker='o')    #T散点颜色,s散点大小,alpha透明度,marker散点形状
    plt.title('random generated data')
    #画分类好的数据
    plt.subplot(222)
    plt.title('classified data through EM')
    order=np.zeros(N)
    color=['b','r','k','y']
    for i in range(N):
        for j in range(k):
            if excep[i,j]==max(excep[i,:]):
                order[i]=j     #选出X[i,:]属于第几个高斯模型
            probility[i] += alpha_[int(order[i])]*math.exp(-(X[i,:]-mu[j,:])*sigma.I*np.transpose(X[i,:]-mu[j,:]))/(np.sqrt(np.linalg.det(sigma))*2*np.pi)    #计算混合高斯分布
        plt.scatter(X[i, 0], X[i, 1], c=color[int(order[i])], s=25, alpha=0.4, marker='o')      #绘制分类后的散点图
    #绘制三维图像
    ax = plt.subplot(223, projection='3d')
    plt.title('3d view')
    for i in range(N):
        ax.scatter(X[i, 0], X[i, 1], probility[i], c=color[int(order[i])])
    plt.show()
if __name__ == '__main__':
    iter_num=1000  #迭代次数
    N=500         #样本数目
    k=4            #高斯模型数
    probility = np.zeros(N)    #混合高斯分布
    u1=[5,35]
    u2=[30,40]
    u3=[20,20]
    u4=[45,15]
    sigma=np.matrix([[30, 0], [0, 30]])               #协方差矩阵
    alpha=[0.1,0.2,0.3,0.4]         #混合项系数
    generate_data(sigma,N,u1,u2,u3,u4,alpha)     #生成数据
    #迭代计算
    for i in range(iter_num):
        err=0     #均值误差
        err_alpha=0    #混合项系数误差
        Old_mu = copy.deepcopy(mu)
        Old_alpha = copy.deepcopy(alpha_)
        e_step(sigma,k,N)     # E步
        m_step(k,N)           # M步     
        print("迭代次数:",i+1)
        print("估计的均值:",mu)
        print("估计的混合项系数:",alpha_)
        for z in range(k):
            err += (abs(Old_mu[z,0]-mu[z,0])+abs(Old_mu[z,1]-mu[z,1]))      #计算误差
            err_alpha += abs(Old_alpha[z]-alpha_[z])
        if (err<=0.001) and (err_alpha<0.001):     #达到精度退出迭代
            print(err,err_alpha)
            break

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值