汉语题:能直接理解需要什么算法,但是对提高英语不太友好。
思路:
这道题属于树形dp,之前写了一道树形dp 的题,以为不过如此,现在发现,太天真
因为基本每一道题的状态都不一样,而状态才是解题的关键。这里的状态是dp[x],表
示能为x 的上层根提供的家丁覆盖程度,我称它为渴望程度,如果为负数的话就是需
要的家丁长度,整数的话就是提供的家丁程度。那么状态的转移就是,从当前的状态
去转移到其子树的状态,根据子树的minn和maxn来判断当前需要是否增添家丁,思
路且看代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int MAXN = 100005;
const int inf = 0x3f3f3f3f;
int n,k,s,e,ans;
int dp[MAXN]; //状态是子树对家丁的渴望程度
vector<int >G[MAXN];
int used[MAXN];
void dfs(int x)
{
used[x] = true;
int minn = inf;
int maxn = -inf;
int size = G[x].size();
for(int i = 0;i < size; i++) {
int temp = G[x][i];
if(!used[temp]) {
dfs(temp); //根据子树的状态去判断现在应该否去放家丁
minn = min(minn,dp[temp]);
maxn = max(maxn,dp[temp]);
}
}
if(minn == inf) //最开始的状态就是-1,表明距离上个根节点的距离为1,也表示当前先不放家丁
dp[x] = -1;
else if(minn == -k) { //当子树的渴望家丁程度<= -k的时候,表示需要放家丁了
ans++;
dp[x] = k; //放完家丁,这里为k表示能为其上层根提供k的渴望程度
}
else if(maxn + minn > 0) //起家丁能提供渴望程度,加上x这一层,需要-1
dp[x] = maxn - 1;
else
dp[x] = minn - 1; //表明渴望程度加深,这里能表现贪心思想
}
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d%d",&n,&k);
for(int i = 1;i < n; i++) {
scanf("%d%d",&s,&e);
G[s].push_back(e);
G[e].push_back(s);
}
if(k == 0)
printf("%d\n",n);
else {
dfs(1);
if(dp[1] < 0)
ans++;
printf("%d\n",ans);
}
return 0;
}