1050 循环数组最大子段和
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注
N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续
的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考a[n1],a[n],a[1],a[2]
这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
思路:
常见的求出一串连续数列的最大字段和很简单,但是这次是可以循环的,答案有两种
- 结果是取中间连续的数列
- 结果是取两边的连续数列
那么问题是怎么求出第二种情况,其实第二种情况是因为数列中间子序列和太小而
绝对值太大,那么我们可以把问题反转,把数列取反,求出中间的子序列然后拿着
原数列的总和与其相加就是两边所求的和。
弱智的我因为数据的范围一直W。可恨。。。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 50005;
int n;
long long SUM;
int a[maxn];
long long solve()
{
long long sum = 0,M = 0;
for(int i = 1;i <= n; i++) {
sum += a[i];
if(M < sum)
M = sum;
if(sum < 0)
sum = 0;
}
return M;
}
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d",&n);
SUM = 0;
for(int i = 1;i <= n; i++) {
scanf("%d",&a[i]);
SUM += a[i];
}
long long ans1 = solve();
for(int i = 1;i <= n; i++) {
a[i] = -a[i];
}
long long ans2 = solve();
printf("%I64d\n",max(ans1,SUM+ans2));
return 0;
}