Brush (III)
题意:屋子里有n个污点, 给你一把宽度为w的刷子, 每次只能横着刷, 问刷k次后最多能刷掉几个污点;
思路:因为只能横着刷, 所以横坐标没有用, 只需记录纵坐标, 然后对纵坐标排序;
对于第i个点可以刷掉i点下边宽度为w范围内的点, 记录为mmove[i];
dp[i][j]表示前i个点刷j次后刷掉的污点数, 那么动态转移方程为dp[i][j]=max(dp[i-1][j](第i个点不刷), dp[i-mmove[i]][j-1]+mmove[i](第j次刷第i个点, 刷掉了mmove[i]个点));
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
using namespace std;
int T, N, w, k;
int dp[105][105];
int y[105];
int mmove[105];
bool cmp(int a, int b){
return a>b;
}
int main(){
scanf("%d", &T);
int ca=0;
while(T--){
ca++;
memset(mmove, 0, sizeof(mmove));
sizeof(dp, 0, sizeof(dp));
scanf("%d%d%d", &N, &w, &k);
int x;
for(int i=1; i<=N; i++){
scanf("%d%d", &x, &y[i]);
}
sort(y+1, y+N+1);
for(int i=1; i<=N; i++){
for(int j=i; j>0; j--){
if(y[i]-y[j]<=w) mmove[i]++;
else break;
}
}
for(int i=1; i<=N; i++){
for(int j=1; j<=k; j++){
if(i>mmove[i]){
dp[i][j]=max(dp[i-1][j], dp[i-mmove[i]][j-1]+mmove[i]);
}
else dp[i][j]=mmove[i];
}
}
printf("Case %d: %d\n", ca, dp[N][k]);
}
return 0;
}