两条曲线相似度的探究(MSE推广)

本文探讨了如何通过数学方法确定两条曲线在给定区间[a,b]内的最优相似度,通过求解Loss函数的最小值,找到使f2(x)与f1(x)最接近的平移常数α。关键步骤包括使用绝对值差的积分和平方方法,以及导数为零的条件。最终目标是通过计算两条曲线的积分差异除以区间长度得到α值,实现曲线的最适匹配。
摘要由CSDN通过智能技术生成

在这里插入图片描述

1. 什么条件下两条曲线最相似

那肯定是在定义域[a, b]中,两条曲线完全重合。用数学语言
∀ x ∈ [ a , b ] , f 1 ( x ) = f 2 ( x ) \forall x \isin [a, b], f_1(x) =f_2(x) x[a,b],f1(x)=f2(x)或者 ∀ x ∈ [ a , b ] , f 1 ( x ) − f 2 ( x ) = 0 (1) \forall x \isin [a, b], f_1(x) -f_2(x)=0 \tag{1} x[a,b],f1(x)f2(x)=0(1) 然而, ∀ \forall 符号是不利于我们计算的,因此我们希望能用一个不带条件的等式来表达(1)式的内容,因此就有了: ∫ a b ∣ f 1 ( x ) − f 2 ( x ) ∣ d x = 0 (2) \int_a^b |f_1(x) -f_2(x)| dx =0 \tag{2} abf1(x)f2(x)dx=0(2) 可以看到,(2)和(1)是完全等价的。
值得注意的是,(2)式里面的绝对值符号||是不能去掉的,这个应该很容易理解。
但是由于绝对值函数在数学上不是连续可导的,因此常用平方的方法,来代替绝对值。 这里我们就把求绝对值得差改成了求两个函数值的二范数 L 2 N o r m L_2Norm L2Norm ∫ a b [ f 1 ( x ) − f 2 ( x ) ] 2 d x = 0 (3) \int_a^b [f_1(x) -f_2(x)]^2 dx =0 \tag{3} ab[f1(x)f2(x)]2dx=0(3)
很明显,(1)(2)(3)都是完全等价的。

但是,并不是所有的曲线都能完全重合,即随便选出两条曲线, L o s s ( f 1 , f 2 ) = ∫ a b [ f 1 ( x ) − f 2 ( x ) ] 2 d x (4) Loss(f_1, f_2) = \int_a^b [f_1(x) -f_2(x)]^2 dx \tag{4} Loss(f1,f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值