完全背包/01背包的基础思路与优化

完全背包问题

有 N 种物品和一个容量是 V的背包,每种物品都有无限件可用。
第 i种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V
,用空格隔开,分别表示物品种数和背包容积。接下来有 N行,每行两个整数 vi,wi,用空格隔开,分别表示第 i种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围

0<N,V≤1000

0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

基础思路(O^3)

超时

#include<iostream>
using namespace std;
const int N =2020; 
int w[N],v[N]; 
int dp[N][N];  //前i件物品中选,体积小于等于j的所有选法中价值最大的选项;
int n,m;
int main()
{
    cin>>n>>m;
    for(int i = 1;i<=n;i++)
    {
        cin>>w[i]>>v[i];
    }
      for(int i = 1;i<=n;i++)  //物品 1-n件
        {
            for(int j = 0;j<=m;j++)  //背包容量 0-m
            {
                for(int k = 0;k*w[i]<=j;k++)  //第i件物品选择几件 0- j/w[i]  
                {
                    dp[i][j] = max(dp[i][j],dp[i-1][j-k*w[i]] + k*v[i]);
                }
            }
            
        }
        
    cout<<dp[n][m];
    return 0 ;
}

优化(O^2)

由于第三层循环是在对第i件物品的不同选择数量中的所有方案中选择一个价值最大的方案

该方案表示为max (dp[i-1][j] , dp[i-1][j-w[i]]+v[i] , dp[i-1][j-2w[i]]+2v[i] , dp[i-1][j-3 w[i]]+3 v[i] , dp[i-1][j-4* w[i]]+4* v[i] , …, dp[i-1][j-kw[i]]+kv[i])**

而对于dp[i][j-w[i]] 这个状态来说 其等价于max(dp[i-1][j-w[i] ], dp[i-1],[j-2w[i]]+v[i] , dp[i-1],[j-3w[i]]+2v[i],…, dp[i-1],[j-kw[i]]+(k-1) * v[i])

可以发现,dp[i][j-w[i]]与该方案相比从第二项开始,每项都差一个v[i],那么就可以把这个方案表示为max(dp[i-1][j],dp[i][j-w[i] + v[i]) ;

于是就可以删除第三层循环,直接利用这个式子就可以

#include<iostream>
using namespace std;
const int N =2020; 
int w[N],v[N]; 
int dp[N][N];  //前i件物品中选,体积小于等于j的所有选法中价值最大的选项;
int n,m;
int main()
{
    cin>>n>>m;
    for(int i = 1;i<=n;i++)
    {
        cin>>w[i]>>v[i];
    }
      for(int i = 1;i<=n;i++)  //物品 1-n件
        {
            for(int j = 0;j<=m;j++)  //背包容量 0-m
            {
                dp[i][j] = dp[i-1][j];
                if(j>=w[i])
                {
                    dp[i][j] = max(dp[i][j],dp[i][j-w[i]]+v[i]);
                }
                
            }
            
        }
    cout<<dp[n][m];
    return 0 ;
}

0/1背包问题

有 N 件物品和一个容量是 V的背包。每件物品只能使用一次。第 i件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。
输入格式

第一行两个整数,N,V

,用空格隔开,分别表示物品数量和背包容积。

接下来有 N
行,每行两个整数 vi,wi,用空格隔开,分别表示第 i

件物品的体积和价值。
输出格式

输出一个整数,表示最大价值。
数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

基础做法

#include<iostream>
using namespace std;
const int N = 1010;
int v[N],w[N];  //体积,价值
int dp[N][N];
int n,m;
int main() 
{
    int n, m;   
    cin >> n >> m;
    for(int i = 1; i <= n; i++) 
        cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++) 
        for(int j = 1; j <= m; j++)
        {
                dp[i][j] = dp[i - 1][j];
            if(j>=v[i])  
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);
        }           
    cout << dp[n][m] << endl;
    return 0;
}

空间优化做法
可以将二维数组优化为一维数组,节省空间

删去判断条件 j>=v[i] ,直接让j范围为(v[i],m);可以省去判断
外层循环不变,代表前i个物品,具体思路是对于每层i,不断对一维数组进行更新覆盖
假设第i-1层循环刚刚结束,i层循环刚刚开始,那么在第i层dp数组内部存放的全部是“前i-1个物品选择的最大价值” 即未经优化做法的dp[i-1][j]; i层循环开始执行时,才不断更新数组内部元素为“前i个物品选择的最大价值”

那么在内层循环中,第i层dp[j]所对应的是经过更新的,相当于dp[i][j];
对于dp[j-v[i]]来说,也是经过更新,相当于dp[i][j-v[i]] ,但我们实际需要更新dp[j],并不需要dp[i][j-v[i]]这个状态,而是需要dp[i-1][j-v[i]]这个状态; 所以需要推迟dp[j-v[i]]这个状态的更新,使其晚于dp[j]的更新,实现方法也很容易,即逆序枚举j,那么在dp[j]更新时,dp[j-w[i]]还未更新,即存放的还是上一层的状态dp[i-1][j-v[i]],再利用状态转移方程即可

#include<iostream>
using namespace std;
const int N = 1010;
int v[N],w[N];  //体积,价值
int dp[N];
int n,m;
//空间优化做法 --  一维
int main()
{
    cin>>n>>m;
    for(int i = 1;i<=n;i++)
    {
        cin>>v[i]>>w[i];
    }
       for(int i = 1;i<=n;i++)
    {   
        for(int j = m;j>=v[i];j--)   //逆序枚举
        {  
            dp[j] = max(dp[j],dp[j-v[i]]+w[i]); //此时dp[j]表示前i个物品,体积小于j 即先前的dp[i][j];
                                                //此时的dp[j-v[i]]表示是dp[i-1][j-v[i]];
        } 
    }
    cout<<dp[m]<<endl;
    return 0 ;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值