Anaconda安装及环境配置+更换下载源+Pytorch安装配置过程详解(基于python3.9)

一、前言

Anaconda是一个开源的Python发行版本,用来管理Python相关的包,安装Anaconda可以很方便的切换不同的环境,使用不同的深度学习框架开发项目,关于Anaconda的安装本文不作详细解释,如果需要安装可以点一下链接: 链接,清华源下载地址为:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=A
本文详细讲解
Anaconda更改下载源
安装运行Pytorch框架

本人使用的python版本是3.9,电脑的显卡型号是NVIDIA GeForce RTX 3060

二、Anaconda更改默认下载源

2.1 首先打开Anaconda Prompt,可以输入conda config --show channels来查看你的下载源目录,当我们没有增加下载源的时候只有自带的一个默认项,如下图:

在这里插入图片描述
Anaconda有两个修改默认设置的命令,如下:第一行语句代表添加命令,第二行代表删除命令,其中的key是指关键词,value指关键词对应的值,可以是某些链接或者文件位置。

conda config --add key value 
conda config --remove key value 

2.2 利用上面两条语句就可以添加或删除下载源,例如我们可以输入

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

来添加清华镜像源,增加之后再输入conda config --show channels去检查,如果出现下图这样,就代表已经更改成功

在这里插入图片描述
下面给大家列举几个常见的国内镜像源,个人认为就一个清华镜像源就足够了,看个人所需:分别是豆瓣、阿里镜像、清华源:

https://pypi.douban.com/simple/
http://mirrors.aliyun.com/pypi/simple/
https://pypi.tuna.tsinghua.edu.cn/simple/

添加的时候可以按照格式输入进行更改conda config --add channels 链接地址即可添加,当有多个源时,也可以用这条语句来更改默认源的位置。
删除的时候输入conda config --remove channels 链接地址即可删除对应的镜像源。

三、安装配置pytorch

3.1 打开Anaconda Prompt,首先找出自己python的版本(我的是3.9版,不同版本更语句中3.9即可),然后创建环境,首先输入conda create -n pytorch python=3.9
可以得到下图:大家注意一下安装位置,默认的是在C盘,想要更改安装位置的小伙伴可以看下一小节,不想更改输入y即可进行安装。

在这里插入图片描述
3.2 成功后可以输入conda info --envs来检测环境是否创建成功,得到下图结果就代表环境创建成功

在这里插入图片描述
3.3 环境创建后就是安装pytorch,不同的电脑配置选不同的安装语句,点此链接进入安装网址:https://pytorch.org/get-started/locally/

在这里插入图片描述
没有GPU的电脑直接选择右下角CPU的代码即可,是否选用CUDA就看自己的电脑有没有GPU,可以点击任务管理器>性能,如果看到下图,就表明具有GPU,右上角是显卡型号

在这里插入图片描述
更加详细的信息可以打开桌面右下角NVIDIA图标,点击帮助>系统信息

在这里插入图片描述
然后查询这个数字

在这里插入图片描述
与网站上CUDA对照表对比即可找出自己电脑适合那种型号的CUDA,例如我的电脑是512.33,那么我就可以选择比较多,CUDA11.6以上都可以。
查询网址如下https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

在这里插入图片描述
3.4 找到可以兼容的型号之后,打开Anaconda Prompt后输入conda activate pytorch进入我们之前创建的pytorch虚拟环境,这时可以看到由(base)变成了(pytorch)

在这里插入图片描述
以CUDA11.3为例,复制对应的代码conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch后点击回车,会有一个安装提示,点y即可进行安装

#这里再给大家放一个CUDA11.0的版本,版本比较低,应该适用于大部分用户,如果装不上高版本的就试一下下面的语句
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

在这里插入图片描述
成功之后会显示done

在这里插入图片描述

3.5 之后输入python进入python环境,再输入import torch,如果显示界面如下,则代表成功安装

在这里插入图片描述
3.6 想要判别pytorch能否调用我们的GPU,只用输入命令torch.cuda.is_available(),如果显示True则表明可以。如下图:

在这里插入图片描述
以上就完成了pytorch框架的安装和配置。

四、更改虚拟环境默认安装位置(如果不介意按照默认路径安装虚拟环境可跳过此小节)

4.1 首先打开Anaconda Prompt,可以用conda config --show envs_dirs来查看你的虚拟环境默认安装位置,得到结果如下:第一个位置作为默认安装位置

在这里插入图片描述
4.2 那么如何更改呢?
利用修改语句可以进行添加和删除命令,也可以用来更换默认位置,例如,我在安装Anaconda的时候安装到E盘中,它有一个默认的虚拟环境文件夹E:\Anaconda3\envs,那么我使用语句:conda config --add envs_dirs E:\Anaconda3\envs就可以将我想要用的文件夹更改为默认位置,如下图

在这里插入图片描述
给大家介绍一下删除虚拟环境的方法,首先输入conda env list来查看当前虚拟环境的位置及名称

在这里插入图片描述

以删除pytorch为例,复制环境安装路径,之后输入conda env remove -p E:\Anaconda\envs\pytorch即可(此处的路径可根据实际情况来替换),结果如下图:

在这里插入图片描述

4.3 这样更改完之后,再全装虚拟环境的时候就可以了吗?

答案并不,尽管我们把默认安装路径调整到我们指定的地方,在安装虚拟环境的时候仍然是安装到C盘,这是因为我们指定的位置文件夹没有写入修改权限,添加权限步骤如下:

  1. 首先找到我们想改更改权限的文件夹,例如我想改我的安装目录E:\Anaconda3\envs,右键点击后打开属性
  2. 点进安全选项,接着点击编辑

在这里插入图片描述

在这里插入图片描述
3. 将光标放置Users上面可以看到下方写入选项没有勾选,鼠标勾选>应用>确定后即可给予写入权限,这时候再从Anaconda Prompt里面安装虚拟环境的时候就可以看到安装位置变成我们指定的E:\Anaconda3\envs,安装即可。

五、结束语

以上就是我今天在安装过程中遇到的一些问题,看了许多篇博客之后,突发奇想写一篇关于如何安装配置Pytorch的文章,希望大家在安装过程中少走弯路。

下期准备将我入门学习python、机器学习、计算机视觉的笔记依次公开给大家,感谢大家的支持哈。

最后,各位看官,如果觉得对您有帮助,收藏的同时不要忘了点个赞哦,感谢啦!!一起学习,加油!

<think>嗯,用户想了解如何在Anaconda中设置清华。首先,我需要回忆一下Anaconda配置镜像的具体步骤。记得清华大学的镜像站提供了Anaconda的仓库镜像,可以加快下载速度。 首先,应该需要修改conda的配置文件.condarc。这个文件通常位于用户的主目录下,比如在Linux系统是~/.condarc,在Windows系统可能是C:\Users\用户名\.condarc。如果文件不存在,可能需要手动创建。 然后,配置的内容应该包括清华的通道URL。需要确认清华当前的正确地址,避免使用过时的链接。可能需要访问清华TUNA的官方网站,查找Anaconda镜像的使用帮助,确保地址正确无误。 接下来,用户可能需要清除当前的conda缓存,这样新的配置才会生效。记得使用conda clean命令来清理索引缓存,比如conda clean -i。 另外,用户可能在使用conda命令时遇到问题,比如通道不可用或者包找不到。这时候需要提示用户检查配置文件是否正确,或者尝试更换其他镜像,比如中科大,作为备选方案。 还有,对于pypi的设置,如果用户同时使用pip安装Python包,可能需要单独配置pip的,比如使用pip config set global.index-url命令指向清华的pypi镜像。这部分虽然不是直接关于Anaconda,但可能对用户有帮助,所以应该一并提及。 需要确保在步骤中分点说明,结构清晰,让用户能一步步跟随操作。同时,提醒用户注意可能的常见问题,比如配置文件格式错误、网络问题等。最后,给出验证配置是否成功的方法,比如执行conda install命令看是否从清华下载。 总结一下,步骤大致是:备份现有配置(如果有)、编辑.condarc文件、添加清华镜像的通道和配置、清理缓存,以及可能的pip设置。同时提供检查方法和故障排除建议。确保使用正确的格式,比如代码块用反引号包裹,路径部分根据操作系统区分开。</think>以下是设置Anaconda清华镜像的详细步骤,可有效加速包下载: --- ### 一、为何要设置清华 清华大学开镜像站(TUNA)提供了Anaconda仓库的国内镜像,能显著提升: 1.下载速度 2. 依赖解析效率 3. 安装成功率 --- ### 二、配置步骤(Windows/Linux/macOS通用) #### 步骤1:生成配置文件 打开终端(Anaconda Prompt或系统终端),执行: ```bash conda config --set show_channel_urls yes ``` #### 步骤2:编辑`.condarc`文件 用文本编辑器打开用户目录下的`.condarc`文件(路径示例): - Windows: `C:\Users\你的用户名\.condarc` - Linux/macOS: `~/.condarc` 替换/添加以下内容: ```yaml channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud ``` #### 步骤3:清除缓存 ```bash conda clean -i ``` --- ### 三、验证配置 执行任意安装命令,观察下载地址: ```bash conda install numpy ``` 若看到`mirrors.tuna.tsinghua.edu.cn`链接即表示配置成功 --- ### 四、常见问题解决 1. **SSL证书错误**:尝试在`.condarc`中添加: ```yaml ssl_verify: false ``` 2. **找不到包**:确认`.condarc`中`default_channels`和`custom_channels`配置正确 3. **恢复默认**:删除`.condarc`文件后执行: ```bash conda config --remove-key channels ``` --- ### 五、可选补充配置(pip镜像) 若同时使用pip安装包,可设置清华PyPI: ```bash pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` --- > 注意:镜像站状态可访问 [清华TUNA镜像站](https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/) 查看最新配置指南
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值