% 读取低照度图像
image = imread('low_light_image.jpg');
% 转换为灰度图像
gray_image = rgb2gray(image);
% 直方图均衡化
hist_eq_image = histeq(gray_image);
% 自适应直方图均衡化
adapthisteq_image = adapthisteq(gray_image);
% 显示原始图像和增强后的图像
subplot(1,3,1);
imshow(gray_image);
title('原始图像');
subplot(1,3,2);
imshow(hist_eq_image);
title('直方图均衡化后的图像');
subplot(1,3,3);
imshow(adapthisteq_image);
title('自适应直方图均衡化后的图像');
修复效果如此,真心不错
在 MATLAB 里,可借助多种方法来增强低照度图像。下面给出两种常用的方法:直方图均衡化和自适应直方图均衡化。
1. 直方图均衡化
直方图均衡化是一种把图像的灰度直方图均匀分布的图像增强技术,能够提升图像的对比度。
2. 自适应直方图均衡化
自适应直方图均衡化(AHE)是直方图均衡化的改进版本,它会把图像划分成多个小块,然后对每个小块分别进行直方图均衡化,从而避免全局直方图均衡化可能产生的过度增强问题。
下面是使用这两种方法进行低照度图像增强的 MATLAB 代码: