low_light_image低照度图像MATLAB代码增强还原

% 读取低照度图像
image = imread('low_light_image.jpg');

% 转换为灰度图像
gray_image = rgb2gray(image);

% 直方图均衡化
hist_eq_image = histeq(gray_image);

% 自适应直方图均衡化
adapthisteq_image = adapthisteq(gray_image);

% 显示原始图像和增强后的图像
subplot(1,3,1);
imshow(gray_image);
title('原始图像');

subplot(1,3,2);
imshow(hist_eq_image);
title('直方图均衡化后的图像');

subplot(1,3,3);
imshow(adapthisteq_image);
title('自适应直方图均衡化后的图像');    

修复效果如此,真心不错

在 MATLAB 里,可借助多种方法来增强低照度图像。下面给出两种常用的方法:直方图均衡化和自适应直方图均衡化。

1. 直方图均衡化

直方图均衡化是一种把图像的灰度直方图均匀分布的图像增强技术,能够提升图像的对比度。

2. 自适应直方图均衡化

自适应直方图均衡化(AHE)是直方图均衡化的改进版本,它会把图像划分成多个小块,然后对每个小块分别进行直方图均衡化,从而避免全局直方图均衡化可能产生的过度增强问题。


下面是使用这两种方法进行低照度图像增强的 MATLAB 代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

potato_potato_123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值