torchvision.datasets.ImageFolder 数据加载

1、torchvision已经余弦实现了常用的Dataset,包括CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。
2、ImageFolder假设所有的文件按文件夹保存,每个文件下存储同一类别的图片,文件夹名为类名,构造函数如下:

ImageFolder(root,transform=None,target_transform=None,loader=default_loader)

主要有四个参数:
root:在指定路径下寻找图片
transform:对PIL Image进行的转换操作
target_transform:对label的转换
loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象
label是按照文件夹名顺序排列后存成字典,即{类名:类序号},类序号从0开始。

from torchvision import transforms as T
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder
 
 
dataset = ImageFolder('data/dogcat_2/')
 
# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)
 
# 所有图片的路径和对应的label
print(dataset.imgs)
 
# 没有任何的transform,所以返回的还是PIL Image对象
#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label
#print(dataset[0][0]) # 为0返回图片数据
plt.imshow(dataset[0][0])
plt.axis('off')
plt.show()
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: `torchvision.datasets.ImageFolder`是PyTorch中的一个内置数据集类,用于存储在文件夹中的图像数据集。该类会将所有的图像按照其所在的文件夹进行分类,并将每个文件夹视为一个类别。可以通过指定`root`参数来指定图像数据集所在的文件夹的路径,同时还可以通过`transform`参数指定需要对图像进行的预处理操作,例如缩放、裁剪、旋转等。在创建`ImageFolder`对象后,可以通过调用`__getitem__`方法来获取指定索引的图像及其对应的标签。该类的使用非常方便,适合用于小型的图像数据集。 ### 回答2: torchvision.datasets.ImageFolder是PyTorch中一个用于图像数据集的类。它可用于带有标签的图像数据集,以便进行各种类型的图像分类任务。 使用ImageFolder,我们可以指定一个包含子文件夹的根目录,每个子文件夹代表一个类别,包含该类别的图像样本。ImageFolder会自动遍历这些文件夹,并为每个样本分配一个类标签。这个类标签是基于文件夹的索引顺序,例如根目录下的第一个文件夹被分配类标签0,第二个文件夹被分配类标签1,依此类推。 在使用ImageFolder数据集时,我们还可以选择是否在图像时应用一些预处理操作,如缩放、裁剪、标准化等。这些预处理操作可以在数据过程中被定义并应用于所有图像。这在训练深度学习模型时非常有用,可以提高数据效率和数据质量。 使用ImageFolder数据集后,我们可以通过迭代器方式访问每个图像样本及其对应的类标签。可以使用这些样本和类标签来进行模型训练、验证和测试。此外,可以与PyTorch中的其他数据工具(如DataLoader)结合使用,以实现数据的批处理、并行等功能。 总之,torchvision.datasets.ImageFolder是一个功能强大的类,可以简化图像分类任务中数据集的和处理过程。它提供了灵活且易于使用的接口,使得图像数据集变得更方便快捷。 ### 回答3: torchvision.datasets.ImageFolder是PyTorch中的一个数据工具,用于从文件夹图像数据集。 ImageFolder类需要指定一个包含图像数据的文件夹路径作为输入。该文件夹路径下应该有多个子文件夹,每个子文件夹代表一个类别,其中包含属于该类别的图像。 ImageFolder类可以通过以下几个重要的参数来进行配置。首先,可以通过transform参数传入一个数据转换函数,用于对图像进行预处理操作,如缩放、裁剪、归一化等。其次,可以通过target_transform参数传入一个目标转换函数,用于对目标进行预处理操作。例如,可以将类别标签从类别名称转换为数字编码。除此之外,还可以通过loader参数指定图像函数,默认为PIL图像。 使用ImageFolder数据集非常简单。首先,需要导入torchvision.datasets模块。然后,使用ImageFolder类实例化一个数据器对象,传入数据集文件夹路径和其他可选参数。接下来,可以使用数据器对象的属性和方法来访问和操作数据集。例如,可以使用属性classes获取所有类别的名称,使用属性class_to_idx获取类别到索引的映射关系,使用len函数获取数据集的大小,使用getitem方法获取具体的样本数据。 总的来说,torchvision.datasets.ImageFolder是一个方便实用的工具,可以帮助我们和操作图像数据集。它可以与其他PyTorch中的数据工具(如DataLoader)配合使用,为模型训练和评估提供了便利。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值