from torchvision.datasets import ImageFolder
import matplotlib.pyplot as plt
import torchvision.transforms as T
#总结一下torchvision.datasets的ImageFolder类
root="catanddogs_dataset"
#ImageFolder是一个class,该类的初始化方法需要传入5个参数,第一个参数root是一个string类型的,需要传入图片文件夹的path
'''
dataset=ImageFolder(root=root)#实例化一个类dataset类
print(type(dataset))#查看dataset类的类型
ImageFolder类有很多属性,比如class_to_idx为dict类型,是一个字典类型
imgs属性为list类型,是一个列表类型
a=dataset.class_to_idx
print('class_to_idx的类型:',type(a))
print('class_to_idx:',a)
print('*'*50)
b=dataset.imgs
print('imgs的类型:',type(b))
print('imgs:',b)
plt.imshow(dataset[1][0])
plt.axis('off')
plt.show()
#没有任何transform,返回的为PIL的Image对象
print(dataset[1][1])#第一维度是第几张图,第二维度为1返回label
'''
normalize=T.Normalize(mean=[0.5,0.5,0.5],std=[0.3,0.3,0.3])
transform=T.Compose([
T.RandomSizedCrop(180),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalize
])
dataset=ImageFolder(root=root,transform=transform)
a=dataset.class_to_idx
print('class_to_idx的类型:',type(a))
print('class_to_idx:',a)
print('*'*50)
b=dataset.imgs
print('imgs的类型:',type(b))
print('imgs:',b)
to_img=T.ToPILImage()#transform提供了ToPILImage类
print(type(to_img))
c=to_img(dataset[1][0]*0.3+0.5)
plt.imshow(c)
plt.axis('off')
plt.show()
学习笔记——pytorch的torchvision.datasets的ImageFolder使用
最新推荐文章于 2024-04-03 12:28:31 发布