学习笔记——pytorch的torchvision.datasets的ImageFolder使用

from torchvision.datasets import ImageFolder
import matplotlib.pyplot as plt
import torchvision.transforms as T

#总结一下torchvision.datasets的ImageFolder类
root="catanddogs_dataset"
#ImageFolder是一个class,该类的初始化方法需要传入5个参数,第一个参数root是一个string类型的,需要传入图片文件夹的path
'''
dataset=ImageFolder(root=root)#实例化一个类dataset类
print(type(dataset))#查看dataset类的类型

ImageFolder类有很多属性,比如class_to_idx为dict类型,是一个字典类型
imgs属性为list类型,是一个列表类型

a=dataset.class_to_idx
print('class_to_idx的类型:',type(a))
print('class_to_idx:',a)
print('*'*50)
b=dataset.imgs
print('imgs的类型:',type(b))
print('imgs:',b)
plt.imshow(dataset[1][0])
plt.axis('off')
plt.show()
#没有任何transform,返回的为PIL的Image对象
print(dataset[1][1])#第一维度是第几张图,第二维度为1返回label
'''
normalize=T.Normalize(mean=[0.5,0.5,0.5],std=[0.3,0.3,0.3])
transform=T.Compose([
    T.RandomSizedCrop(180),
    T.RandomHorizontalFlip(),
    T.ToTensor(),
    normalize
])
dataset=ImageFolder(root=root,transform=transform)
a=dataset.class_to_idx
print('class_to_idx的类型:',type(a))
print('class_to_idx:',a)
print('*'*50)
b=dataset.imgs
print('imgs的类型:',type(b))
print('imgs:',b)
to_img=T.ToPILImage()#transform提供了ToPILImage类
print(type(to_img))
c=to_img(dataset[1][0]*0.3+0.5)
plt.imshow(c)
plt.axis('off')
plt.show()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuejich

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值