宋浩概率论与数理统计笔记——第四章

4.1.1离散型变量的数学期望

平均数180190200 180 + 190 + 200 3 \frac{180+190+200}{3} 3180+190+200
加权平均90(0.9)100(0.09)15(0.01) 0.9 × 90 + 0.09 × 100 + 0.01 × 15 0.9\times90+0.09\times100+0.01\times15 0.9×90+0.09×100+0.01×15

离散型的期望

P ( X = x k ) = P k , 若 Σ k = 1 ∞ x k P k 绝 对 收 敛 , 则 数 学 期 望 E X = Σ k = 1 ∞ x k P k P(X=x_k)=P_k,若\Sigma_{k=1}^{\infty}x_kP_k绝对收敛,则数学期望EX=\Sigma_{k=1}^{\infty}x_kP_k P(X=xk)=Pk,Σk=1xkPk,EX=Σk=1xkPk

数学期望不是一定存在的

例:甲乙两人生产产品, X 1 、 X 2 X_1、X_2 X1X2分别是两人生产的次品数,问甲乙两人谁的生产质量更高

X 1 X_1 X10123
P0.30.30.20.2
X 2 X_2 X20123
P0.20.50.30

E X 1 = 0 ∗ 0.3 + 1 ∗ 0.3 + 20.2 + 3 ∗ 0.2 = 1.3 EX_1=0*0.3+1*0.3+20.2+3*0.2=1.3 EX1=00.3+10.3+20.2+30.2=1.3

E X 2 = 0 ∗ 0.2 + 1 ∗ 0.5 + 2 ∗ 0.3 + 3 ∗ 0 = 1.1 EX_2=0*0.2+1*0.5+2*0.3+3*0=1.1 EX2=00.2+10.5+20.3+30=1.1

乙的生产质量更高

例:一批产品中有一等品、二等品、三等品和次品,分别占60%、20%、10%、10%,四种质量的产品,价格分别为6元、4.8元、4元、0元,求这批产品的产值:

E X = 6 ∗ 0.6 + 4.8 ∗ 0.2 + 4 ∗ 0.1 + 0 ∗ 0.1 = 4.96 元 EX=6*0.6+4.8*0.2+4*0.1+0*0.1=4.96元 EX=60.6+4.80.2+40.1+00.1=4.96

4.1.2连续型变量的数学期望

随 机 变 量 X , 密 度 函 数 为 f ( x ) , 若 ∫ − ∞ + ∞ x f ( x ) d x 绝 对 收 敛 , 则 数 学 期 望 E X = ∫ − ∞ + ∞ x f ( x ) d x 随机变量X,密度函数为f(x),若\int_{-\infty}^{+\infty}xf(x)dx绝对收敛,则数学期望EX=\int_{-\infty}^{+\infty}xf(x)dx Xf(x),+xf(x)dxEX=+xf(x)dx

例: f ( x ) = { 2 x 0 < x < 1 0 e l s e f(x)=\left\{ \begin{array}{rcl} 2x & 0<x<1 \\ 0 & else \end{array}\right. f(x)={2x00<x<1else

E X = ∫ − ∞ + ∞ x f ( x ) d x = ∫ 0 1 x 2 x d x = 2 3 EX=\int_{-\infty}^{+\infty}xf(x)dx=\int_{0}^{1}x2xdx=\frac{2}{3} EX=+xf(x)dx=01x2xdx=32

例:家电先用后付,家电的寿命符合 λ = 1 10 \lambda=\frac{1}{10} λ=101的指数分布

X ≤ 1 年 X\leq1年 X11500元
1 年 < X ≤ 2 年 1年<X\leq2年 1<X22000元
2 年 < X ≤ 3 年 2年<X\leq3年 2<X32500元
X > 3 年 X>3年 X>33000元

P { X ≤ 1 } = ∫ 0 1 1 10 e − x 10 d x = 0.0952 P\{X\leq1\}=\int_0^1\frac{1}{10}e^{-\frac{x}{10}}dx=0.0952 P{X1}=01101e10xdx=0.0952

P { 1 < X ≤ 2 } = ∫ 1 2 1 10 e − x 10 d x = 0.0861 P\{1<X\leq 2\}=\int_1^2\frac{1}{10}e^{-\frac{x}{10}}dx=0.0861 P{1<X2}=12101e10xdx=0.0861

P { 2 < X ≤ 3 } = ∫ 2 3 1 10 e − x 10 d x = 0.0779 P\{2<X\leq3\}=\int_2^3\frac{1}{10}e^{-\frac{x}{10}}dx=0.0779 P{2<X3}=23101e10xdx=0.0779

P { X > 3 } = ∫ 3 + ∞ 1 10 e − x 10 d x = 0.7408 P\{X>3\}=\int_3^{+\infty}\frac{1}{10}e^{-\frac{x}{10}}dx=0.7408 P{X>3}=3+101e10xdx=0.7408

Y1500200025003000
P0.09520.08610.07790.7408

E X = 1500 ∗ 0.0952 + 2000 ∗ 0.0861 + 2500 ∗ 0.0779 + 3000 ∗ 0.7408 = 2732.15 EX=1500*0.0952+2000*0.0861+2500*0.0779+3000*0.7408=2732.15 EX=15000.0952+20000.0861+25000.0779+30000.7408=2732.15

4.1.3随机变量函数的数学期望

(1)

Y = g ( X ) Y=g(X) Y=g(X)

EXEY
离散 Σ x i P i \Sigma x_iP_i ΣxiPi Σ g ( x i ) P i \Sigma g(x_i)P_i Σg(xi)Pi
连续 ∫ − ∞ + ∞ x f ( x ) d x \int_{-\infty}^{+\infty}xf(x)dx +xf(x)dx ∫ − ∞ + ∞ g ( x ) f ( x ) d x \int_{-\infty}^{+\infty}g(x)f(x)dx +g(x)f(x)dx
X012
P0.10.60.3

Y = 4 X + 1 Y=4X+1 Y=4X+1

Y159
P0.10.60.3

E Y = 1 ∗ 0.1 + 5 ∗ 0.6 + 9 ∗ 0.3 = 5.8 EY=1*0.1+5*0.6+9*0.3=5.8 EY=10.1+50.6+90.3=5.8

E Y = ( 4 ∗ 0 + 1 ) ∗ 0.1 + ( 4 ∗ 1 + 1 ) ∗ 0.6 + ( 4 ∗ 2 + 1 ) ∗ 0.3 = 5.8 EY=(4*0+1)*0.1+(4*1+1)*0.6+(4*2+1)*0.3=5.8 EY=(40+1)0.1+(41+1)0.6+(42+1)0.3=5.8

E X = 0 ∗ 0.1 + 1 ∗ 0.6 + 2 ∗ 0.3 = 1.2 EX=0*0.1+1*0.6+2*0.3=1.2 EX=00.1+10.6+20.3=1.2

E ( X − E X ) 2 = E ( X − 1.2 ) 2 = ( 0 − 1.2 ) 2 × 0.1 + ( 1 − 1.2 ) 2 × 0.6 + ( 2 − 1.2 ) 2 × 0.3 = 0.36 E(X-EX)^2=E(X-1.2)^2=(0-1.2)^2\times0.1+(1-1.2)^2\times0.6+(2-1.2)^2\times0.3=0.36 E(XEX)2=E(X1.2)2=(01.2)2×0.1+(11.2)2×0.6+(21.2)2×0.3=0.36

(2)

f ( x ) = { 1 2 0 ≤ x ≤ 2 0 e l s e , Y = 4 X + 1 f(x)=\left\{ \begin{array}{rcl} \frac{1}{2} & 0\leq x\leq 2 \\ 0 & else \end{array}\right.,Y=4X+1 f(x)={2100x2else,Y=4X+1

E Y = E ( 4 X + 1 ) = ∫ − ∞ + ∞ ( 4 x + 1 ) f ( x ) d x = ∫ 0 2 1 4 ( 4 x + 1 ) d x = 5 EY=E(4X+1)=\int_{-\infty}^{+\infty}(4x+1)f(x)dx=\int_{0}^{2}\frac{1}{4}(4x+1)dx=5 EY=E(4X+1)=+(4x+1)f(x)dx=0241(4x+1)dx=5

(3)

X 表 示 商 品 的 需 求 量 , 在 [ 2000 , 4000 ] 上 的 均 匀 分 布 , 每 卖 1 吨 获 利 3 万 元 , 卖 不 出 每 吨 损 失 1 万 元 X表示商品的需求量,在[2000,4000]上的均匀分布,每卖1吨获利3万元,卖不出每吨损失1万元 X[2000,4000]131

假设 y y y是准备出口的商品量, Y Y Y是收益

Y = g ( x ) = { 3 y x ≥ y 3 x − ( y − x ) x < y , f ( x ) = { 1 2000 2000 ≤ x ≤ 4000 0 e l s e Y=g(x)=\left\{ \begin{array}{rcl} 3y & x\geq y \\ 3x-(y-x) & x<y \end{array}\right.,f(x)=\left\{ \begin{array}{rcl} \frac{1}{2000} & 2000\leq x\leq 4000 \\ 0 & else \end{array}\right. Y=g(x)={3y3x(yx)xyx<y,f(x)={2000102000x4000else

E Y = ∫ − ∞ + ∞ g ( x ) f ( x ) d x = ∫ 2000 4000 1 2000 g ( x ) d x = 1 2000 ( ∫ 2000 y ( 3 x − ( y − x ) ) d x + ∫ y 4000 3 y d x ) = 1 1000 ( − y 2 + 7000 y − 4 × 1 0 6 ) EY=\int_{-\infty}^{+\infty}g(x)f(x)dx=\int_{2000}^{4000}\frac{1}{2000}g(x)dx=\frac{1}{2000}(\int_{2000}^{y}(3x-(y-x))dx+\int_{y}^{4000}3ydx)\\=\frac{1}{1000}(-y^2+7000y-4\times10^6) EY=+g(x)f(x)dx=2000400020001g(x)dx=20001(2000y(3x(yx))dx+y40003ydx)=10001(y2+7000y4×106)

当 y = 3500 时 函 数 达 到 顶 点 当y=3500时函数达到顶点 y=3500

二维变量函数 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的期望

(1)离散型: E X = Σ i Σ j g ( x i , y j ) P i j EX=\Sigma_i\Sigma_jg(x_i,y_j)P_{ij} EX=ΣiΣjg(xi,yj)Pij

X\Y012
10.10.10.2
20.20.20.2

E Z = ( 1 2 − 0 ) × 0.1 + ( 1 2 − 1 ) × 0.1 + ( 1 2 − 2 ) × 0.2 + ( 2 2 − 0 ) × 0.2 + ( 2 2 − 1 ) × 0.2 + ( 2 2 − 2 ) × 0.2 EZ=(1^2-0)\times0.1+(1^2-1)\times0.1+(1^2-2)\times0.2+(2^2-0)\times0.2+(2^2-1)\times0.2+(2^2-2)\times0.2 EZ=(120)×0.1+(121)×0.1+(122)×0.2+(220)×0.2+(221)×0.2+(222)×0.2

(2)连续型: E X = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y EX=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy EX=++g(x,y)f(x,y)dxdy

例:

f ( x , y ) = { x + y 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 0 e l s e f(x,y)=\left\{ \begin{array}{rcl} x+y & 0\leq x\leq 1,0\leq y\leq 1 \\ 0 & else \end{array}\right. f(x,y)={x+y00x1,0y1else

E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y = ∫ 0 1 ∫ 0 1 x y ( x + y ) d x d y = 1 3 E(XY)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf(x,y)dxdy=\int_0^1\int_0^1xy(x+y)dxdy=\frac{1}{3} E(XY)=++xyf(x,y)dxdy=0101xy(x+y)dxdy=31

例:

X : 进 货 量 , Y : 需 求 量 , X 、 Y 相 互 独 立 并 服 从 在 [ 10 , 20 ] 上 的 均 匀 分 布 , 卖 出 1 件 获 利 1000 元 , 从 其 他 商 店 调 剂 一 件 获 利 500 元 , 求 每 周 的 平 均 利 润 X:进货量,Y:需求量,X、Y相互独立并服从在[10,20]上的均匀分布,卖出1件获利1000元,\\从其他商店调剂一件获利500元,求每周的平均利润 X:Y:,XY[10,20]11000500

Z = g ( X , Y ) = { 1000 Y Y ≤ X 1000 X + 500 ( Y − X ) Y > X Z=g(X,Y)=\left\{ \begin{array}{rcl} 1000Y & Y\leq X \\ 1000X+500(Y-X) & Y>X \end{array}\right. Z=g(X,Y)={1000Y1000X+500(YX)YXY>X

f X ( x ) = { 1 10 10 ≤ x ≤ 20 0 e l s e , f Y ( y ) { 1 10 10 ≤ y ≤ 20 0 e l s e f_X(x)=\left\{ \begin{array}{rcl} \frac{1}{10} & 10\leq x\leq 20 \\ 0 & else \end{array}\right.,f_Y(y)\left\{ \begin{array}{rcl} \frac{1}{10} & 10\leq y\leq 20 \\ 0 & else \end{array}\right. fX(x)={101010x20else,fY(y){101010y20else

f ( x , y ) = f X ( x ) f Y ( y ) = { 1 100 10 ≤ x ≤ 20 , 10 ≤ y ≤ 20 0 e l s e f(x,y)=f_X(x)f_Y(y)=\left\{ \begin{array}{rcl} \frac{1}{100} & 10\leq x\leq 20,10\leq y\leq 20 \\ 0 & else \end{array}\right. f(x,y)=fX(x)fY(y)={1001010x20,10y20else

E Z = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y = 1 100 ∫ 10 20 ∫ 10 20 g ( x , y ) d x d y = 1 100 ∫ 10 20 d y ∫ 10 20 g ( x , y ) d x = 1 100 ∫ 10 20 d y [ ∫ 10 y 500 ( x + y ) d x + ∫ y 20 1000 y d x ] ≈ 14166.67 EZ=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy=\frac{1}{100}\int_{10}^{20}\int_{10}^{20}g(x,y)dxdy\\=\frac{1}{100}\int_{10}^{20}dy\int_{10}^{20}g(x,y)dx\\=\frac{1}{100}\int_{10}^{20}dy[\int_{10}^{y}500(x+y)dx+\int_{y}^{20}1000ydx]\\\approx 14166.67 EZ=++g(x,y)f(x,y)dxdy=100110201020g(x,y)dxdy=10011020dy1020g(x,y)dx=10011020dy[10y500(x+y)dx+y201000ydx]14166.67

4.1.4数学期望的性质

  1. E C = C , 常 数 的 期 望 等 于 常 数 本 身 EC=C,常数的期望等于常数本身 EC=C,
  2. E ( X + C ) = E X + C E(X+C)=EX+C E(X+C)=EX+C
  3. E ( C X ) = C ⋅ E X E(CX)=C\cdot EX E(CX)=CEX
  4. E ( k X + b ) = k E X + b E(kX+b)=kEX+b E(kX+b)=kEX+b
  5. E ( X ± Y ) = E X ± E Y E ( Σ C i X i ) = Σ C i E X i E ( 1 n Σ X i ) = 1 n Σ E X i E(X\pm Y)=EX\pm EY\\E(\Sigma C_iX_i)=\Sigma C_{i}EX_{i}\\E(\frac{1}{n}\Sigma X_i)=\frac{1}{n}\Sigma EX_i E(X±Y)=EX±EYE(ΣCiXi)=ΣCiEXiE(n1ΣXi)=n1ΣEXi
  6. X , Y 独 立 , E ( X Y ) = E X ⋅ E Y X,Y独立,E(XY)=EX\cdot EY X,Y,E(XY)=EXEY

例: X 、 Y 独 立 X、Y独立 XY

X91011
P0.30.50.2
Y67
P0.40.6

(1) E X = 9 ∗ 0.3 + 10 ∗ 0.5 + 11 ∗ 0.2 = 9.9 EX=9*0.3+10*0.5+11*0.2=9.9 EX=90.3+100.5+110.2=9.9

E Y = 6 ∗ 0.4 + 7 ∗ 0.6 = 6.6 EY=6*0.4+7*0.6=6.6 EY=60.4+70.6=6.6

E ( X + Y ) = E X + E Y = 16.5 E(X+Y)=EX+EY=16.5 E(X+Y)=EX+EY=16.5

X+Y15161718
P0.120.380.380.12

E ( X + Y ) = 15 ∗ 0.12 + 16 ∗ 0.38 + 17 ∗ 0.38 + 18 ∗ 0.12 = 16.5 E(X+Y)=15*0.12+16*0.38+17*0.38+18*0.12=16.5 E(X+Y)=150.12+160.38+170.38+180.12=16.5

(2) E ( X Y ) = E X ⋅ E Y = 9.9 ∗ 6.6 E(XY)=EX\cdot EY=9.9*6.6 E(XY)=EXEY=9.96.6

(3) E Y 2 = 36 ∗ 0.4 + 49 ∗ 0.6 = 43.8 EY^2=36*0.4+49*0.6=43.8 EY2=360.4+490.6=43.8

例:

X\Y123
00.10.20.3
10.20.10.1

E ( X − Y ) = E X − E Y = 0.4 ∗ 1 − 1 ∗ 0.3 + 2 ∗ 0.3 + 3 ∗ 0.4 = 2.1 = − 1.7 E(X-Y)=EX-EY=0.4*1-1*0.3+2*0.3+3*0.4=2.1=-1.7 E(XY)=EXEY=0.4110.3+20.3+30.4=2.1=1.7

E ( X Y ) E(XY) E(XY)

X\Y123
00.10.20.30.6
10.20.10.10.4
0.30.30.4

0.3 ∗ 0.6 ≠ 0.1 , X 、 Y 不 独 立 0.3*0.6\neq 0.1,X、Y不独立 0.30.6=0.1,XY

E ( X Y ) = 1 ∗ 0.2 + 2 ∗ 0.1 + 3 ∗ 0.1 = 0.7 E(XY)=1*0.2+2*0.1+3*0.1=0.7 E(XY)=10.2+20.1+30.1=0.7

例:10个骰子,X为点数之和,求EX

X i : 第 i 个 骰 子 的 点 数 X_i:第i个骰子的点数 Xii

X i X_i Xi123456
P 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61

E X i = 1 6 ( 1 + 2 + 3 + 4 + 5 + 6 ) = 7 2 EX_i=\frac{1}{6}(1+2+3+4+5+6)=\frac{7}{2} EXi=61(1+2+3+4+5+6)=27

E X = E ( X 1 + . . . + X 10 ) = Σ i = 1 10 E X i = 10 × 7 2 = 35 EX=E(X_1+...+X_{10})=\Sigma_{i=1}^{10}EX_i=10\times\frac{7}{2}=35 EX=E(X1+...+X10)=Σi=110EXi=10×27=35

例:N件产品,有M件次品,任取n件 n ≤ M ≤ N , 求 次 品 数 的 期 望 n\leq M\leq N,求次品数的期望 nMN,

次品: 1 ∼ M . X i = { 1 第 i 件 是 次 品 0 第 i 件 不 是 次 品 i = 1 , 2 , . . . , M 1\sim M.X_i=\left\{ \begin{array}{rcl} 1 & 第i件是次品 \\ 0 & 第i件不是次品 \end{array}\right. i=1,2,...,M 1M.Xi={10iii=1,2,...,M

X : 次 品 总 数 , X = X 1 + X 2 + . . . + X M X:次品总数,X=X_1+X_2+...+X_M X:X=X1+X2+...+XM

P { X i = 1 } = n N P\{X_i=1\}=\frac{n}{N} P{Xi=1}=Nn

P { X i = 0 } = 1 − n N P\{X_i=0\}=1-\frac{n}{N} P{Xi=0}=1Nn

E X i = 1 ∗ n N + 0 ∗ ( 1 − n N ) = n N EX_i=1*\frac{n}{N}+0*(1-\frac{n}{N})=\frac{n}{N} EXi=1Nn+0(1Nn)=Nn

E X = E X 1 + E X 2 + . . . + E X M = n N M EX=EX_1+EX_2+...+EX_M=\frac{n}{N}M EX=EX1+EX2+...+EXM=NnM

4.1.5条件期望:一个变量已经确定的情况下,另一个变量的期望

(1)离散型

E ( X ∣ Y = y i ) = Σ x i P ( X = x i ∣ Y = y i ) E(X|Y=y_i)=\Sigma x_iP(X=x_i|Y=y_i) E(XY=yi)=ΣxiP(X=xiY=yi)

E ( Y ∣ X = x i ) = Σ y i P ( Y = y i ∣ X = x i ) E(Y|X=x_i)=\Sigma y_iP(Y=y_i|X=x_i) E(YX=xi)=ΣyiP(Y=yiX=xi)

X\Y123
00.10.20.3
10.20.10.1
Y123
$P(YX=1)$0.2/(0.2+0.1+0.1)=0.50.1/(0.2+0.1+0.1)=0.25

E ( Y ∣ X = 1 ) = 1 ∗ 0.5 + 2 ∗ 0.25 + 3 ∗ 0.25 = 1.75 E(Y|X=1)=1*0.5+2*0.25+3*0.25=1.75 E(YX=1)=10.5+20.25+30.25=1.75

(2)连续型

E ( X ∣ Y = y ) = ∫ − ∞ + ∞ x f ( x ∣ y ) d x E(X|Y=y)=\int_{-\infty}^{+\infty}xf(x|y)dx E(XY=y)=+xf(xy)dx

E ( Y ∣ X = x ) = ∫ − ∞ + ∞ y f ( y ∣ x ) d y E(Y|X=x)=\int_{-\infty}^{+\infty}yf(y|x)dy E(YX=x)=+yf(yx)dy

4.2.1方差的定义

方 差 : D X = E ( X − E X ) 2 , 标 准 差 : D X 方差:DX=E(X-EX)^2,标准差:\sqrt{DX} DX=E(XEX)2,DX

(1)离散型: D X = Σ k ( x k − E X ) 2 P k DX=\Sigma_k(x_k-EX)^2P_k DX=Σk(xkEX)2Pk

(2)连续型: D X = ∫ − ∞ + ∞ ( x − E X ) 2 f ( x ) d x DX=\int_{-\infty}^{+\infty}(x-EX)^2f(x)dx DX=+(xEX)2f(x)dx

D X = E ( X 2 ) − ( E X ) 2 DX=E(X^2)-(EX)^2 DX=E(X2)(EX)2

例:

X-202
P0.40.30.3

E X = − 0.2 , E X 2 = 2.8 , D X = E X 2 − E ( X ) 2 = 2.76 EX=-0.2,EX^2=2.8,DX=EX^2-E(X)^2=2.76 EX=0.2,EX2=2.8,DX=EX2E(X)2=2.76

例:

f ( x ) = { 2 x 0 < x < 1 0 e l s e f(x)=\left\{ \begin{array}{rcl} 2x & 0<x<1 \\ 0 & else \end{array}\right. f(x)={2x00<x<1else

E X = ∫ 0 1 x ⋅ 2 x d x = 2 3 EX=\int_{0}^{1}x\cdot 2xdx=\frac{2}{3} EX=01x2xdx=32

E X 2 = ∫ 0 1 x 2 ⋅ 2 x d x = 1 2 EX^2=\int_{0}^{1}x^2\cdot 2xdx=\frac{1}{2} EX2=01x22xdx=21

D X = E X 2 − E ( X ) 2 = 1 18 DX=EX^2-E(X)^2=\frac{1}{18} DX=EX2E(X)2=181

例: f ( x ) = { a x 2 + b x + c 0 < x < 1 0 e l s e , E X = 0.5 , D X = 0.15 f(x)=\left\{ \begin{array}{rcl} ax^2+bx+c & 0<x<1 \\ 0 & else \end{array}\right.,EX=0.5,DX=0.15 f(x)={ax2+bx+c00<x<1else,EX=0.5,DX=0.15

∵ \because 密度函数从负无穷到正无穷积分等于1

∴ ∫ 0 1 ( a x 2 + b x + c ) d x = 1 \therefore \int_{0}^{1}(ax^2+bx+c )dx=1 01(ax2+bx+c)dx=1

E X = ∫ 0 1 x ( a x 2 + b x + c ) d x = 0.5 EX=\int_{0}^{1}x(ax^2+bx+c)dx=0.5 EX=01x(ax2+bx+c)dx=0.5

D X = E ( X 2 ) − 0.25 = 0.15 , E ( X 2 ) = 0.4 DX=E(X^2)-0.25=0.15,E(X^2)=0.4 DX=E(X2)0.25=0.15,E(X2)=0.4

E ( X 2 ) = ∫ 0 1 x 2 ( a x 2 + b x + c ) d x = 0.4 E(X^2)=\int_{0}^{1}x^2(ax^2+bx+c)dx=0.4 E(X2)=01x2(ax2+bx+c)dx=0.4

4.2.2方差的性质

(1) D C = 0 , 常 数 的 方 差 等 于 0 DC=0,常数的方差等于0 DC=0,0

(2) D ( X + C ) = D X D(X+C)=DX D(X+C)=DX

(3) D ( C X ) = C 2 D X D(CX)=C^2DX D(CX)=C2DX

(4) D ( k X + b ) = k 2 D X D(kX+b)=k^2DX D(kX+b)=k2DX

(5) X 、 Y 独 立 , D ( X ± Y ) = D X + D Y X、Y独立,D(X\pm Y)=DX+DY XY,D(X±Y)=DX+DY

X 1 , . . . , X n 独 立 , D ( X 1 + . . . + X n ) = D ( X 1 ) + . . . + D ( X n ) X_1,...,X_n独立, D(X_1+...+X_n)=D(X_1)+...+D(X_n) X1,...,Xn,D(X1+...+Xn)=D(X1)+...+D(Xn)

D ( X ± Y ) = E ( X ± Y − E ( X ± Y ) ) 2 = E ( X ± Y − E X ∓ E Y ) 2 = E ( ( X − E X ) ± ( Y − E Y ) ) 2 = E [ ( X − E X ) 2 ± 2 ( X − E X ) ( Y − E Y ) + ( Y − E Y ) 2 ] = E ( X − E X ) 2 + E ( Y − E Y ) 2 ± 2 E [ ( X − E X ) ( Y − E Y ) ] D(X\pm Y)=E(X\pm Y-E(X\pm Y))^2=E(X\pm Y-EX\mp EY)^2\\=E((X-EX)\pm (Y-EY))^2=E[(X-EX)^2\pm 2(X-EX)(Y-EY)+(Y-EY)^2]\\=E(X-EX)^2+E(Y-EY)^2\pm 2E[(X-EX)(Y-EY)] D(X±Y)=E(X±YE(X±Y))2=E(X±YEXEY)2=E((XEX)±(YEY))2=E[(XEX)2±2(XEX)(YEY)+(YEY)2]=E(XEX)2+E(YEY)2±2E[(XEX)(YEY)]

E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y − X E Y − Y E X + E X E Y ) ∵ X 、 Y 独 立 ∴ E ( X Y − X E Y − Y E X + E X E Y ) = E X E Y − E Y E X − E X E Y + E X E Y = 0 ∴ D ( X ± Y ) = E ( X − E X ) 2 + E ( Y − E Y ) 2 = D X + D Y E[(X-EX)(Y-EY)]=E(XY-XEY-YEX+EXEY)\\ \because X、Y独立\\\therefore E(XY-XEY-YEX+EXEY)=EXEY-EYEX-EXEY+EXEY=0\\\therefore D(X\pm Y)=E(X-EX)^2+E(Y-EY)^2=DX+DY E[(XEX)(YEY)]=E(XYXEYYEX+EXEY)XYE(XYXEYYEX+EXEY)=EXEYEYEXEXEY+EXEY=0D(X±Y)=E(XEX)2+E(YEY)2=DX+DY

(6) D X = 0 ⟺ P ( X = E X ) = 1 DX=0\Longleftrightarrow P(X=EX)=1 DX=0P(X=EX)=1

方差和期望性质的对比

D(X)方差E(X)性质
D ( C ) = 0 D(C)=0 D(C)=0 E ( C ) = C E(C)=C E(C)=C
D ( X + C ) = D ( X ) D(X+C)=D(X) D(X+C)=D(X) E ( X + C ) = E ( X ) + C E(X+C)=E(X)+C E(X+C)=E(X)+C
D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X) E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
D ( k X + b ) = k 2 D ( X ) D(kX+b)=k^2D(X) D(kX+b)=k2D(X) E ( k X + b ) = k E ( X ) + b E(kX+b)=kE(X)+b E(kX+b)=kE(X)+b
D ( X ) = 0 ⟺ P ( X = E X ) = 1 D(X)=0\Longleftrightarrow P(X=EX)=1 D(X)=0P(X=EX)=1 E ( X ± Y ) = E ( X ) ± E ( Y ) E(X\pm Y)=E(X)\pm E(Y) E(X±Y)=E(X)±E(Y)
X 、 Y 独 立 , D ( X ± Y ) = D ( X ) + D ( Y ) X、Y独立,D(X\pm Y)=D(X)+D(Y) XY,D(X±Y)=D(X)+D(Y) X 、 Y 独 立 , E ( X Y ) = E ( X ) ⋅ E ( Y ) X、Y独立,E(XY)=E(X)\cdot E(Y) XY,E(XY)=E(X)E(Y)

若 X ∗ = X − E ( X ) D ( X ) , ← 标 准 化 则 E ( X ∗ ) = 0 , D ( X ∗ ) = 1 若X^*=\frac{X-E(X)}{\sqrt{D(X)}},\leftarrow 标准化\\则E(X^*)=0,D(X^*)=1 X=D(X) XE(X),E(X)=0,D(X)=1

E ( X ∗ ) = E ( X − E ( X ) D ( X ) ) = 1 D ( X ) E ( X − E ( X ) ) = 1 D ( X ) ( E ( X ) − E ( X ) ) = 0 E(X^*)=E(\frac{X-E(X)}{\sqrt{D(X)}})=\frac{1}{\sqrt{D(X)}}E(X-E(X))=\frac{1}{\sqrt{D(X)}}(E(X)-E(X))=0 E(X)=E(D(X) XE(X))=D(X) 1E(XE(X))=D(X) 1(E(X)E(X))=0

D ( X ∗ ) = 1 D ( X ) D ( X − E ( X ) ) = D ( X ) D ( X ) = 1 D(X^*)=\frac{1}{D(X)}D(X-E(X))=\frac{D(X)}{D(X)}=1 D(X)=D(X)1D(XE(X))=D(X)D(X)=1

P S : E ( X ) 、 D ( X ) 看 做 常 数 PS:E(X)、D(X)看做常数 PS:E(X)D(X)

4.3.1 常见离散型的期望与方差

0-1分布:

P ( X = k ) = P k ( 1 − P ) 1 − k P(X=k)=P^k(1-P)^{1-k} P(X=k)=Pk(1P)1k

E X = p EX=p EX=p

q = 1 − p q=1-p q=1p

D X = E ( X 2 ) − ( E X ) 2 = p − p 2 = p ( 1 − p ) = p q DX=E(X^2)-(EX)^2=p-p^2=p(1-p)=pq DX=E(X2)(EX)2=pp2=p(1p)=pq

二项分布:

P ( X = k ) = C n k p k q n − k , k = 0 , 1 , 2 , . . . P(X=k)=C_n^kp^kq^{n-k},k=0,1,2,... P(X=k)=Cnkpkqnk,k=0,1,2,...

E X = Σ k = 0 n k C n k p k q n − k = Σ k = 0 n k n ! k ! ( n − k ) ! p k q n − k = Σ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k q n − k = n p Σ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 q n − k = n p Σ k − 1 = 0 n − 1 C n − 1 k − 1 p k − 1 q n − k = n p ( p + q ) n − 1 = n p EX=\Sigma_{k=0}^{n}kC_n^kp^kq^{n-k}=\Sigma_{k=0}^{n}k\frac{n!}{k!(n-k)!}p^kq^{n-k}=\Sigma_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}p^kq^{n-k}\\=np\Sigma_{k=1}^{n}\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}q^{n-k}\\=np\Sigma_{k-1=0}^{n-1}C^{k-1}_{n-1}p^{k-1}q^{n-k}\\=np(p+q)^{n-1}\\=np EX=Σk=0nkCnkpkqnk=Σk=0nkk!(nk)!n!pkqnk=Σk=1n(k1)!(nk)!n!pkqnk=npΣk=1n(k1)!(nk)!(n1)!pk1qnk=npΣk1=0n1Cn1k1pk1qnk=np(p+q)n1=np

( p + q ) n = Σ k = 0 n C n k p k q n − k (p+q)^{n}=\Sigma_{k=0}^{n}C_{n}^{k}p^kq^{n-k} (p+q)n=Σk=0nCnkpkqnk

E X 2 = n p q + n 2 p 2 , D X = n p q EX^2=npq+n^2p^2,DX=npq EX2=npq+n2p2,DX=npq

X : 二 项 分 布 的 总 次 数 , X 1 , . . . , X n , X = X 1 + . . . + X n E X = E ( X 1 + . . . + X n ) = E X 1 + . . . + E X n = n p D X = D ( X 1 + . . . + X n ) = D X 1 + . . . + D X n = n p q X:二项分布的总次数,X_1,...,X_n,X=X_1+...+X_n\\EX=E(X_1+...+X_n)=EX_1+...+EX_n=np\\DX=D(X_1+...+X_n)=DX_1+...+DX_n=npq X:X1,...,XnX=X1+...+XnEX=E(X1+...+Xn)=EX1+...+EXn=npDX=D(X1+...+Xn)=DX1+...+DXn=npq

几何分布:

P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , 3 , . . . P(X=k)=(1-p)^{k-1}p,k=1,2,3,... P(X=k)=(1p)k1p,k=1,2,3,...

Σ k = 1 ∞ k x k − 1 = ( Σ k = 1 ∞ x k ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \Sigma_{k=1}^{\infty}kx^{k-1}=(\Sigma_{k=1}^{\infty}x^k)'=(\frac{x}{1-x})'=\frac{1}{(1-x)^2} Σk=1kxk1=(Σk=1xk)=(1xx)=(1x)21

E X = Σ k = 1 ∞ k ( 1 − p ) k − 1 p = ( Σ k = 1 ∞ k ( 1 − p ) k − 1 ) p = 1 p 2 p = 1 p EX=\Sigma_{k=1}^{\infty}k(1-p)^{k-1}p=\big(\Sigma_{k=1}^{\infty}k(1-p)^{k-1}\big)p=\frac{1}{p^2}p=\frac{1}{p} EX=Σk=1k(1p)k1p=(Σk=1k(1p)k1)p=p21p=p1

Σ k = 1 ∞ k 2 x k − 1 = Σ k = 1 ∞ k ⋅ k x k − 1 = ( Σ k = 1 ∞ k ⋅ x k ) ′ = ( x Σ k = 1 ∞ k x k − 1 ) ′ = ( x ( 1 − x ) 2 ) ′ = 1 + x ( 1 − x ) 3 , ∣ x ∣ < 1 \Sigma_{k=1}^{\infty}k^2x^{k-1}=\Sigma_{k=1}^{\infty} k\cdot kx^{k-1}=(\Sigma_{k=1}^{\infty} k\cdot x^{k})'=(x\Sigma_{k=1}^{\infty}kx^{k-1})'=(\frac{x}{(1-x)^2})'\\=\frac{1+x}{(1-x)^3},|x|<1 Σk=1k2xk1=Σk=1kkxk1=(Σk=1kxk)=(xΣk=1kxk1)=((1x)2x)=(1x)31+x,x<1

E X 2 = Σ k = 1 ∞ k 2 ( 1 − p ) k − 1 p = 2 − p p 2 EX^2=\Sigma_{k=1}^{\infty}k^2(1-p)^{k-1}p=\frac{2-p}{p^2} EX2=Σk=1k2(1p)k1p=p22p

D X = 1 − p p 2 DX=\frac{1-p}{p^2} DX=p21p

泊松分布:

P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2 , . . . P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... P(X=k)=k!λkeλ,k=0,1,2,...

E X = Σ k = 0 ∞ k λ k k ! e − λ = Σ k = 1 ∞ λ k ( k − 1 ) ! e − λ = λ Σ k = 1 ∞ λ k − 1 ( k − 1 ) ! e − λ ( 令 m = k − 1 ) = λ Σ m = 0 ∞ λ m m ! e − λ = λ EX=\Sigma_{k=0}^{\infty}k\frac{\lambda^k}{k!}e^{-\lambda}=\Sigma_{k=1}^{\infty}\frac{\lambda^k}{(k-1)!}e^{-\lambda}=\lambda\Sigma_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda}(令m=k-1)\\=\lambda\Sigma_{m=0}^{\infty}\frac{\lambda^m}{m!}e^{-\lambda}\\=\lambda EX=Σk=0kk!λkeλ=Σk=1(k1)!λkeλ=λΣk=1(k1)!λk1eλ(m=k1)=λΣm=0m!λmeλ=λ

Σ m = 0 ∞ λ m m ! e − λ = 1 \Sigma_{m=0}^{\infty}\frac{\lambda^m}{m!}e^{-\lambda}=1 Σm=0m!λmeλ=1

E X 2 = Σ k = 0 ∞ k 2 λ k k ! e − λ = Σ k = 1 ∞ k λ k ( k − 1 ) ! e − λ = Σ k = 1 ∞ ( k − 1 ) λ k ( k − 1 ) ! e − λ + Σ k = 1 ∞ λ k ( k − 1 ) ! e − λ = Σ k = 1 ∞ ( k − 1 ) λ k ( k − 1 ) ! e − λ + λ Σ k = 1 ∞ λ k − 1 ( k − 1 ) ! e − λ = Σ k = 1 ∞ ( k − 1 ) λ k ( k − 1 ) ! e − λ + λ = Σ k = 2 ∞ λ k ( k − 2 ) ! e − λ + λ = λ 2 Σ k = 2 ∞ λ k − 2 ( k − 2 ) ! e − λ + λ = λ 2 + λ EX^2=\Sigma_{k=0}^{\infty}k^2\frac{\lambda^k}{k!}e^{-\lambda}\\=\Sigma_{k=1}^{\infty}k\frac{\lambda^k}{(k-1)!}e^{-\lambda}\\=\Sigma_{k=1}^{\infty}\frac{(k-1)\lambda^k}{(k-1)!}e^{-\lambda}+\Sigma_{k=1}^{\infty}\frac{\lambda^k}{(k-1)!}e^{-\lambda}\\=\Sigma_{k=1}^{\infty}\frac{(k-1)\lambda^k}{(k-1)!}e^{-\lambda}+\lambda\Sigma_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda}\\=\Sigma_{k=1}^{\infty}\frac{(k-1)\lambda^k}{(k-1)!}e^{-\lambda}+\lambda\\=\Sigma_{k=2}^{\infty}\frac{\lambda^k}{(k-2)!}e^{-\lambda}+\lambda\\=\lambda^2\Sigma_{k=2}^{\infty}\frac{\lambda^{k-2}}{(k-2)!}e^{-\lambda}+\lambda\\=\lambda^2+\lambda EX2=Σk=0k2k!λkeλ=Σk=1k(k1)!λkeλ=Σk=1(k1)!(k1)λkeλ+Σk=1(k1)!λkeλ=Σk=1(k1)!(k1)λkeλ+λΣk=1(k1)!λk1eλ=Σk=1(k1)!(k1)λkeλ+λ=Σk=2(k2)!λkeλ+λ=λ2Σk=2(k2)!λk2eλ+λ=λ2+λ

D X = E X 2 − ( E X ) 2 = λ DX=EX^2-(EX)^2=\lambda DX=EX2(EX)2=λ

4.3.2 常见连续型的期望与方差

均匀分布:

f ( x ) = { 1 b − a x ∈ [ a , b ] 0 e l s e f(x)=\left\{ \begin{array}{rcl} \frac{1}{b-a} & x\in[a,b] \\ 0 & else \end{array}\right. f(x)={ba10x[a,b]else

E X = ∫ a b x 1 b − a d x = a + b 2 EX=\int_a^bx\frac{1}{b-a}dx=\frac{a+b}{2} EX=abxba1dx=2a+b

E X 2 = ∫ a b x 2 1 b − a d x = b 2 + a b + a 2 3 EX^2=\int_a^bx^2\frac{1}{b-a}dx=\frac{b^2+ab+a^2}{3} EX2=abx2ba1dx=3b2+ab+a2

D X = E X 2 − ( E X ) 2 = ( b − a ) 2 12 DX=EX^2-(EX)^2=\frac{(b-a)^2}{12} DX=EX2(EX)2=12(ba)2

指数分布:

f ( x ) = { λ e − λ x x > 0 0 e l s e f(x)=\left\{ \begin{array}{rcl} \lambda e^{-\lambda x} & x>0 \\ 0 & else \end{array}\right. f(x)={λeλx0x>0else

E X = − ∫ 0 + ∞ x e − λ d ( − λ x ) = − ∫ 0 + ∞ x d e − λ x = − x e − λ x ∣ 0 + ∞ + ∫ 0 + ∞ e − λ x d x = 1 λ EX=-\int_{0}^{+\infty}xe^{-\lambda }d(-\lambda x)=-\int_{0}^{+\infty}xde^{-\lambda x}=-xe^{-\lambda x}|_0^{+\infty}+\int_{0}^{+\infty}e^{-\lambda x}dx=\frac{1}{\lambda} EX=0+xeλd(λx)=0+xdeλx=xeλx0++0+eλxdx=λ1

E X 2 = ∫ 0 + ∞ x 2 λ e − λ x d x = − ∫ 0 + ∞ x 2 d e − λ x = − x 2 e − λ x ∣ 0 + ∞ + 2 ∫ 0 + ∞ e − λ x x d x = 2 λ 2 EX^2=\int_{0}^{+\infty}x^2\lambda e^{-\lambda x}dx=-\int_{0}^{+\infty}x^2de^{-\lambda x}=-x^2e^{-\lambda x}|^{+\infty}_{0}+2\int_{0}^{+\infty}e^{-\lambda x}xdx=\frac{2}{\lambda^2} EX2=0+x2λeλxdx=0+x2deλx=x2eλx0++20+eλxxdx=λ22

D X = 1 λ 2 DX=\frac{1}{\lambda^2} DX=λ21

正态分布:

X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

E X = μ , D X = σ 2 EX=\mu,DX=\sigma^2 EX=μ,DX=σ2

Y = X − μ σ ∼ N ( 0 , 1 ) Y=\frac{X-\mu}{\sigma}\sim N(0,1) Y=σXμN(0,1)

E Y = 0 , D Y = 1 E X = E ( σ Y + μ ) = σ E Y + μ = μ D X = D ( σ Y + μ ) = σ 2 D Y = σ 2 EY=0,DY=1\\EX=E(\sigma Y+\mu)=\sigma EY+\mu=\mu\\DX=D(\sigma Y+\mu)=\sigma^2DY=\sigma^2 EY=0,DY=1EX=E(σY+μ)=σEY+μ=μDX=D(σY+μ)=σ2DY=σ2

分布定义EXDX
0-1 P ( X = k ) = P k ( 1 − P ) 1 − k P(X=k)=P^k(1-P)^{1-k} P(X=k)=Pk(1P)1k p p p p q pq pq
二项 P ( X = k ) = C n k p k q n − k , k = 0 , 1 , 2 , . . . P(X=k)=C_n^kp^kq^{n-k},k=0,1,2,... P(X=k)=Cnkpkqnk,k=0,1,2,... n p np np n p q npq npq
几何 P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , 3 , . . . P(X=k)=(1-p)^{k-1}p,k=1,2,3,... P(X=k)=(1p)k1p,k=1,2,3,... 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p
泊松 P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2 , . . . P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... P(X=k)=k!λkeλ,k=0,1,2,... λ \lambda λ λ \lambda λ
均匀 f ( x ) = { 1 b − a x ∈ [ a , b ] 0 e l s e f(x)=\left\{ \begin{array}{rcl}\frac{1}{b-a} & x\in[a,b] \\0 & else \end{array}\right. f(x)={ba10x[a,b]else a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
指数 f ( x ) = { λ e − λ x x > 0 0 e l s e f(x)=\left\{ \begin{array}{rcl}\lambda e^{-\lambda x} & x>0 \\0 & else \end{array}\right. f(x)={λeλx0x>0else 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21
正态 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2

4.4.1 协方差

C o v ( X , Y ) = E ( ( X − E X ) ( Y − E Y ) ) = E ( X Y − X E Y − Y E X + E X E Y ) = E ( X Y ) − E X E Y Cov(X,Y)=E\big((X-EX)(Y-EY)\big)\\=E(XY-XEY-YEX+EXEY)\\=E(XY)-EXEY Cov(X,Y)=E((XEX)(YEY))=E(XYXEYYEX+EXEY)=E(XY)EXEY

D ( X ± Y ) = D X + D Y ± 2 C o v ( X , Y ) D(X\pm Y)=DX+DY\pm 2Cov(X,Y) D(X±Y)=DX+DY±2Cov(X,Y)

例:

X\Y-101
-1 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81
0 1 8 \frac{1}{8} 810 1 8 \frac{1}{8} 81
1 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81

求协方差并判断是否独立

X\Y-101
-1 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 3 8 \frac{3}{8} 83
0 1 8 \frac{1}{8} 810 1 8 \frac{1}{8} 81 1 4 \frac{1}{4} 41
1 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 3 8 \frac{3}{8} 83
3 8 \frac{3}{8} 83 1 4 \frac{1}{4} 41 3 8 \frac{3}{8} 83

X的边缘分布

X-101
P 3 8 \frac{3}{8} 83 1 4 \frac{1}{4} 41 3 8 \frac{3}{8} 83

Y的边缘分布

Y-101
P 3 8 \frac{3}{8} 83 1 4 \frac{1}{4} 41 3 8 \frac{3}{8} 83

E X = 0 , E Y = 0 EX=0,EY=0 EX=0,EY=0

E ( X , Y ) = 1 8 − 1 8 − 1 8 + 1 8 = 0 E(X,Y)=\frac{1}{8}-\frac{1}{8}-\frac{1}{8}+\frac{1}{8}=0 E(X,Y)=818181+81=0

C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0

X,Y不独立

例:

f ( x , y ) = { x + y 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 0 e l s e f(x,y)=\left\{ \begin{array}{rcl} x+y & 0\leq x\leq 1,0\leq y\leq 1 \\ 0 & else \end{array}\right. f(x,y)={x+y00x1,0y1else

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = ∫ 0 1 ( x + y ) d y = x + 1 2 f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy=\int_0^1(x+y)dy=x+\frac{1}{2} fX(x)=+f(x,y)dy=01(x+y)dy=x+21

f X ( x ) = { x + 1 2 0 ≤ x ≤ 1 0 e l s e f_X(x)=\left\{ \begin{array}{rcl} x+\frac{1}{2} & 0\leq x\leq 1 \\ 0 & else \end{array}\right. fX(x)={x+2100x1else

同理可得, f Y ( y ) = { y + 1 2 0 ≤ y ≤ 1 0 e l s e f_Y(y)=\left\{ \begin{array}{rcl} y+\frac{1}{2} & 0\leq y\leq 1 \\ 0 & else \end{array}\right. fY(y)={y+2100y1else

E X = ∫ 0 1 x ( x + 1 2 ) d x = 7 12 , E Y = 7 12 EX=\int_0^1x(x+\frac{1}{2})dx=\frac{7}{12},EY=\frac{7}{12} EX=01x(x+21)dx=127,EY=127

E ( X Y ) = ∫ 0 1 ∫ 0 1 x y ( x + y ) d x d y = 1 3 E(XY)=\int_0^1\int_0^1xy(x+y)dxdy=\frac{1}{3} E(XY)=0101xy(x+y)dxdy=31

C o v ( X , Y ) = E ( X Y ) − E X E Y = − 1 144 Cov(X,Y)=E(XY)-EXEY=-\frac{1}{144} Cov(X,Y)=E(XY)EXEY=1441

协方差的性质:

  1. C o v ( X , Y ) = C o v ( Y , X ) 左 = E ( X Y ) − E X E Y , 右 = E ( Y X ) − E Y E X , 左 = 右 Cov(X,Y)=Cov(Y,X)\\左=E(XY)-EXEY,右=E(YX)-EYEX,左=右 Cov(X,Y)=Cov(Y,X)=E(XY)EXEY,=E(YX)EYEX,=

  2. C o v ( a X , b Y ) = a b C o v ( X , Y ) 左 = E ( a X b Y ) − E ( a X ) E ( b Y ) = a b E ( X Y ) − a b E X E Y = a b ( E ( X Y ) − E X E Y ) = 右 Cov(aX,bY)=abCov(X,Y)\\左=E(aXbY)-E(aX)E(bY)=abE(XY)-abEXEY=ab\big(E(XY)-EXEY\big)=右 Cov(aX,bY)=abCov(X,Y)=E(aXbY)E(aX)E(bY)=abE(XY)abEXEY=ab(E(XY)EXEY)=

  3. C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) 左 = E [ ( X 1 + X 2 ) Y ] − E ( X 1 + X 2 ) E Y = E ( X 1 Y ) + E ( X 2 Y ) − E X 1 E Y − E X 2 E Y = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)\\左=E[(X_1+X_2)Y]-E(X_1+X_2)EY=E(X_1Y)+E(X_2Y)-EX_1EY-EX_2EY\\=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)=E[(X1+X2)Y]E(X1+X2)EY=E(X1Y)+E(X2Y)EX1EYEX2EY=Cov(X1,Y)+Cov(X2,Y)

  4. C o v ( C , X ) = 0 , 左 = E ( C X ) − E C E X = C E X − C E X = 0 Cov(C,X)=0,\\左=E(CX)-ECEX=CEX-CEX=0 Cov(C,X)=0,=E(CX)ECEX=CEXCEX=0

  5. X , Y 独 立 , C o v ( X , Y ) = 0 ∵ X , Y 独 立 ∴ E ( X Y ) = E X E Y C o v ( X , Y ) = E ( X Y ) − E X E Y = 0 X,Y独立,Cov(X,Y)=0\\\because X,Y独立\therefore E(XY)=EXEY\\Cov(X,Y)=E(XY)-EXEY=0 X,Y,Cov(X,Y)=0X,YE(XY)=EXEYCov(X,Y)=E(XY)EXEY=0

X,Y之间的协方差表示两者之间的关系,但是会受计量单位的影响

X ∗ = X − E X D X , Y ∗ = Y − E Y D Y , 标 准 化 C o v ( X ∗ , Y ∗ ) = E ( X ∗ Y ∗ ) − E X ∗ E Y ∗ = E [ X − E X D X Y − E Y D Y ] − E ( X − E X D X ) E ( Y − E Y D Y ) = E [ X − E X D X Y − E Y D Y ] = E ( ( X − E X ) ( Y − E Y ) ) D X D Y = C o v ( X , Y ) D X D Y = ρ X^*=\frac{X-EX}{\sqrt{DX}},Y^*=\frac{Y-EY}{\sqrt{DY}},标准化\\Cov(X^*,Y^*)=E(X^*Y^*)-EX^*EY^*=E[\frac{X-EX}{\sqrt{DX}}\frac{Y-EY}{\sqrt{DY}}]-E(\frac{X-EX}{\sqrt{DX}})E(\frac{Y-EY}{\sqrt{DY}})\\=E[\frac{X-EX}{\sqrt{DX}}\frac{Y-EY}{\sqrt{DY}}]\\=\frac{E\big((X-EX)(Y-EY)\big)}{\sqrt{DX}\sqrt{DY}}\\=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}=\rho X=DX XEX,Y=DY YEY,Cov(X,Y)=E(XY)EXEY=E[DX XEXDY YEY]E(DX XEX)E(DY YEY)=E[DX XEXDY YEY]=DX DY E((XEX)(YEY))=DX DY Cov(X,Y)=ρ

4.4.2 相关系数, ρ = C o v ( X , Y ) D X D Y = E ( X Y ) − E X E Y D X D Y \rho=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}=\frac{E(XY)-EXEY}{\sqrt{DX}\sqrt{DY}} ρ=DX DY Cov(X,Y)=DX DY E(XY)EXEY

ρ 与 C o v ( X , Y ) 同 正 同 负 同 零 , 衡 量 线 性 关 系 \rho与Cov(X,Y)同正同负同零,衡量线性关系 ρCov(X,Y)线

例: D X = 4 , D Y = 9 , ρ = 0.5 , 求 D ( X − Y ) DX=4,DY=9,\rho=0.5,求D(X-Y) DX=4,DY=9,ρ=0.5,D(XY)

C o v ( X , Y ) = ρ D X D Y = 3 Cov(X,Y)=\rho\sqrt{DX}\sqrt{DY}=3 Cov(X,Y)=ρDX DY =3

D ( X − Y ) = D X + D Y − 2 C o v ( X , Y ) = 7 D(X-Y)=DX+DY-2Cov(X,Y)=7 D(XY)=DX+DY2Cov(X,Y)=7

∣ ρ ∣ ≤ 1 |\rho|\leq 1 ρ1

引理: [ E ( X Y ) ] 2 ≤ E X 2 ⋅ E Y 2 [E(XY)]^2\leq EX^2\cdot EY^2 [E(XY)]2EX2EY2

证:

g ( t ) = E ( t X − Y ) 2 = E ( t 2 X 2 − 2 t X + Y 2 ) = t 2 E X 2 − 2 t E ( X Y ) + Y 2 ≥ 0 g(t)=E(tX-Y)^2=E(t^2X^2-2tX+Y^2)=t^2EX^2-2tE(XY)+Y^2\geq 0 g(t)=E(tXY)2=E(t2X22tX+Y2)=t2EX22tE(XY)+Y20

Δ = 4 [ E ( X Y ) ] 2 − 4 E X 2 E Y 2 [ E ( X Y ) ] 2 ≤ E X 2 E Y 2 \Delta=4[E(XY)]^2-4EX^2EY^2\\ [E(XY)]^2\leq EX^2EY^2 Δ=4[E(XY)]24EX2EY2[E(XY)]2EX2EY2

ρ 2 ≤ 1 \rho^2\leq1 ρ21

X 1 = X − E X , Y 1 = Y − E Y ρ 2 = ( E [ ( X − E X ) ( Y − E Y ) ] ) 2 D X ⋅ D Y = [ E ( X 1 Y 1 ) ] 2 E X 1 2 E Y 1 2 ≤ 1 X_1=X-EX,Y_1=Y-EY\\\rho^2=\frac{(E[(X-EX)(Y-EY)])^2}{DX\cdot DY}=\frac{[E(X_1Y_1)]^2}{EX_1^2EY_1^2}\leq1 X1=XEX,Y1=YEYρ2=DXDY(E[(XEX)(YEY)])2=EX12EY12[E(X1Y1)]21

定理: ∣ ρ ∣ = 1 ⟺ X 与 Y 是 以 概 率 p = 1 成 线 性 关 系 , P ( Y = a X + b ) = 1 |\rho|=1\Longleftrightarrow X与Y是以概率p=1成线性关系,P(Y=aX+b)=1 ρ=1XYp=1线P(Y=aX+b)=1

ρ = 1 \rho=1 ρ=1X,Y完全正相关
ρ = − 1 \rho=-1 ρ=1X,Y完全负相关
$\rho
ρ = 0 \rho=0 ρ=0X,Y不存在线性关系
X,Y不相关X,Y独立
线性关系没有任何关系,包括线性关系,非线性关系
X,Y独立,则X,Y不相关X,Y不相关,X,Y不一定独立
∵ X , Y 独 立 ∴ E ( X Y ) = E X E Y ρ = E ( X Y ) − E X E Y D X D Y = 0 X , Y 不 相 关 \because X,Y独立\\\therefore E(XY)=EXEY\\\rho=\frac{E(XY)-EXEY}{\sqrt{DX}\sqrt{DY}}=0\\X,Y不相关 X,YE(XY)=EXEYρ=DX DY E(XY)EXEY=0X,Y X , Y 不 相 关 , ρ = 0 ∴ E ( X Y ) = E X E Y X , Y 独 立 ⟺ f ( x , y ) = f X ( x ) f Y ( y ) 证 不 出 X , Y 独 立 X,Y不相关,\rho=0\\\therefore E(XY)=EXEY\\X,Y独立\Longleftrightarrow f(x,y)=f_X(x)f_Y(y)\\证不出X,Y独立 X,Yρ=0E(XY)=EXEYX,Yf(x,y)=fX(x)fY(y)X,Y

二维正态分布的独立和不相关等价,独立就是不相关,不相关就是独立

4.5 中心矩与原点矩

原点矩: E X k = E ( X − 0 ) k , 以 原 点 为 中 心 期 望 E X 是 一 阶 原 点 矩 EX^k=E(X-0)^k,以原点为中心\\期望EX是一阶原点矩 EXk=E(X0)k,EX

离散型: Σ x i k P i \Sigma x_i^kP_i ΣxikPi

连续型: ∫ − ∞ + ∞ x k f ( x ) d x \int_{-\infty}^{+\infty}x^kf(x)dx +xkf(x)dx

中心矩: E ( X − E X ) k , 以 E X 为 中 心 一 阶 中 心 矩 : E ( X − E X ) = E X − E X = 0 二 阶 中 心 矩 : E ( X − E X ) 2 方 差 E(X-EX)^k,以EX为中心\\一阶中心矩:E(X-EX)=EX-EX=0\\二阶中心矩:E(X-EX)^2方差 E(XEX)k,EXE(XEX)=EXEX=0E(XEX)2

离散型: Σ ( X i − E X ) k P i \Sigma (X_i-EX)^kP_i Σ(XiEX)kPi

连续型: ∫ − ∞ + ∞ ( X − E X ) k f ( x ) d x \int_{-\infty}^{+\infty}(X-EX)^kf(x)dx +(XEX)kf(x)dx

高于四阶的矩,极少使用

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值