宋浩概率论与数理统计-第四章-笔记

第四章

4.1.1 离散型变量的数学期望

P ( X = x k ) = P k P(X=x_k)=P_k P(X=xk)=Pk,若 ∑ k = 1 ∞ x k P k \displaystyle\sum\limits_{k=1}^\infin x_kP_k k=1xkPk绝对收敛,则 E X = ∑ k = 1 ∞ x k P k E_X=\displaystyle\sum\limits_{k=1}^\infin x_kP_k EX=k=1xkPk称为期望或均值

定义中要求积数绝对收敛,保证了积数的和与求和顺序无关

离散型变量可以是无穷多个

4.1.2 连续型变量的数学期望

随机变量 X X X,密度函数为 f ( x ) f(x) f(x),若 ∫ − ∞ + ∞ x f ( x ) d x \displaystyle\int_{-\infin}^{+\infin}xf(x)dx +xf(x)dx绝对收敛,则 E X = ∫ − ∞ + ∞ x f ( x ) d x E_X=\displaystyle\int_{-\infin}^{+\infin}xf(x)dx EX=+xf(x)dx称为数学期望

4.1.3 随机变量函数的数学期望

Y = g ( X ) Y=g(X) Y=g(X)

离散:
E X = ∑ x i P i E_X=\displaystyle\sum x_iP_i EX=xiPi
E Y = ∑ g ( x i ) P i E_Y=\displaystyle\sum g(x_i)P_i EY=g(xi)Pi
连续:
E X = ∫ − ∞ + ∞ x f ( x ) d x E_X=\displaystyle\int_{-\infin}^{+\infin}xf(x)dx EX=+xf(x)dx
E Y = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E_Y=\displaystyle\int_{-\infin}^{+\infin}g(x)f(x)dx EY=+g(x)f(x)dx


【例1】
X 0 1 2 P 0.1 0.6 0.3 \begin{array}{c|c} X & 0 & 1 & 2\\ \hline P & 0.1 & 0.6 & 0.3 \end{array} XP00.110.620.3
Y = 4 X + 1 Y=4X+1 Y=4X+1,求期望

解:
Y 1 5 9 P 0.1 0.6 0.3 \begin{array}{c|c} Y & 1 & 5 & 9\\ \hline P & 0.1 & 0.6 & 0.3 \end{array} YP10.150.690.3
E Y = 1 × 0.1 + 5 × 0.6 + 9 × 0.3 = 5.8 E_Y=1\times0.1+5\times0.6+9\times0.3=5.8 EY=1×0.1+5×0.6+9×0.3=5.8

【例2】
f ( x ) = { 1 2 0 ≤ x ≤ 2 0 e l s e f(x)=\begin{cases} \displaystyle\frac{1}{2} & 0\leq x\leq2\\ 0 & else \end{cases} f(x)=2100x2else
Y = 4 X + 1 Y=4X+1 Y=4X+1,求 E Y E_Y EY

解:
E Y = E ( 4 X + 1 ) = ∫ − ∞ + ∞ ( 4 x + 1 ) f ( x ) d x = ∫ 0 2 1 2 ( 4 x + 1 ) d x = 5 E_Y=E_{(4X+1)}=\displaystyle\int_{-\infin}^{+\infin}(4x+1)f(x)dx=\int_0^2\frac{1}{2}(4x+1)dx=5 EY=E(4X+1)=+(4x+1)f(x)dx=0221(4x+1)dx=5

【例3】
X X X为需求量, X X X [ 2000 , 4000 ] [2000,4000] [2000,4000]上均匀分布,每卖出1吨赚3w,卖不出1吨损失1w,问最佳出口数量

解:
y y y为出口数量, Y Y Y为收益
根据题意,有:
Y = g ( X ) = { 3 y X ≥ y 3 X − ( y − X ) X < y Y=g(X)=\begin{cases} 3y & X\geq y\\ 3X-(y-X) & X<y \end{cases} Y=g(X)={3y3X(yX)XyX<y

又因为
f ( x ) = { 1 2000 2000 ≤ x ≤ 4000 0 e l s e f(x)=\begin{cases} \displaystyle\frac{1}{2000} & 2000\leq x\leq4000\\ 0 & else \end{cases} f(x)=2000102000x4000else

则:
E Y = ∫ − ∞ + ∞ g ( x ) f ( x ) d x = ∫ 2000 4000 g ( x ) 2000 d x = 1 2000 ( ∫ 2000 y ( 4 x − y ) d x + ∫ y 4000 3 y d x ) = 1 1000 ( − y 2 + 7000 y − 4 × 1 0 6 ) E_Y=\displaystyle\int_{-\infin}^{+\infin}g(x)f(x)dx=\int_{2000}^{4000}\frac{g(x)}{2000}dx=\frac{1}{2000}(\int_{2000}^y(4x-y)dx+\int_y^{4000}3ydx)=\frac{1}{1000}(-y^2+7000y-4\times10^6) EY=+g(x)f(x)dx=200040002000g(x)dx=20001(2000y(4xy)dx+y40003ydx)=10001(y2+7000y4×106)

y = 3500 y=3500 y=3500时, E Y E_Y EY最大

二维变量函数:
设二维变量 ( X , Y ) (X,Y) (X,Y),求 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的期望
离散: E Z = ∑ i ∑ j g ( x i , y i ) P i j E_Z=\displaystyle\sum_i\sum_jg(x_i,y_i)P_{ij} EZ=ijg(xi,yi)Pij
连续: E Z = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E_Z=\displaystyle\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}g(x,y)f(x,y)dxdy EZ=++g(x,y)f(x,y)dxdy


【例4】
f ( x , y ) = { x + y 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 0 e l s e f(x,y)=\begin{cases} x+y & 0\leq x\leq1,0\leq y\leq1\\ 0 & else \end{cases} f(x,y)={x+y00x1,0y1else
E ( X Y ) E_{(XY)} E(XY)

解:
E ( X Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y = ∫ 0 1 ∫ 0 1 x y ( x + y ) d x d y = 1 3 E_{(XY)}=\displaystyle\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}g(x,y)f(x,y)dxdy=\int_0^1\int_0^1xy(x+y)dxdy=\frac{1}{3} E(XY)=++g(x,y)f(x,y)dxdy=0101xy(x+y)dxdy=31

【例5】
X X X:进货量, Y Y Y:需求量, X Y XY XY独立,且都服从在 [ 10 , 20 ] [10,20] [10,20]上的均匀分布。卖出1件获利1000元,其他商店调货卖出获利500元,问平均利润。

解:
由题意,有:
Z = g ( X , Y ) = { 1000 Y Y ≤ X 1000 X + 500 ( Y − X ) Y > X Z=g(X,Y)=\begin{cases} 1000Y & Y\leq X\\ 1000X+500(Y-X)& Y>X \end{cases} Z=g(X,Y)={1000Y1000X+500(YX)YXY>X
f X ( x ) = { 1 10 10 ≤ x ≤ 20 0 e l s e f_X(x)=\begin{cases} \displaystyle\frac{1}{10} & 10\leq x\leq20\\ 0 & else \end{cases} fX(x)=101010x20else
f Y ( y ) = { 1 10 10 ≤ y ≤ 20 0 e l s e f_Y(y)=\begin{cases} \displaystyle\frac{1}{10} & 10\leq y\leq20\\ 0 & else \end{cases} fY(y)=101010y20else

计算可得:
f ( x , y ) = f X ( x ) f Y ( y ) = { 1 10 10 ≤ x ≤ 20 , 10 ≤ y ≤ 20 0 e l s e f(x,y)=f_X(x)f_Y(y)=\begin{cases} \displaystyle\frac{1}{10} & 10\leq x\leq20, 10\leq y\leq20\\ 0 & else \end{cases} f(x,y)=fX(x)fY(y)=101010x20,10y20else

因此:
E Z = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y = 1 100 ∫ 10 20 d y ∫ 10 20 g ( x , y ) d x = 1 100 ∫ 10 20 d y [ ∫ 10 y 500 ( x + y ) d x + ∫ y 20 1000 y d x ] ≈ 14166.67 E_Z=\displaystyle\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}g(x,y)f(x,y)dxdy=\frac{1}{100}\int_{10}^{20}dy\int_{10}^{20}g(x,y)dx=\frac{1}{100}\int_{10}^{20}dy[\int_{10}^{y}500(x+y)dx+\int_{y}^{20}1000ydx]\approx14166.67 EZ=++g(x,y)f(x,y)dxdy=10011020dy1020g(x,y)dx=10011020dy[10y500(x+y)dx+y201000ydx]14166.67

4.1.4 数学期望的性质

  1. E ( C ) = C E(C)=C E(C)=C(常数的期望等于常数)
  2. E ( X + C ) = E ( X ) + C E(X+C)=E(X)+C E(X+C)=E(X)+C
  3. E ( C X ) = C ⋅ E ( X ) E(CX)=C\cdot E(X) E(CX)=CE(X)
  4. E ( k X + b ) = k ⋅ E ( X ) + b E(kX+b)=k\cdot E(X)+b E(kX+b)=kE(X)+b
  5. E ( X ± Y ) = E ( X ) ± E ( Y ) E(X\pm Y)=E(X)\pm E(Y) E(X±Y)=E(X)±E(Y)
    E ( ∑ C i X i ) = ∑ C i E ( X i ) E(\sum C_iXi)=\sum C_iE(X_i) E(CiXi)=CiE(Xi)
    E ( 1 n ∑ X i ) = 1 n ∑ E ( X i ) \displaystyle E(\frac{1}{n}\sum X_i)=\frac{1}{n}\sum E(X_i) E(n1Xi)=n1E(Xi)
  6. X Y XY XY独立时,有: E ( X Y ) = E ( X ) ⋅ E ( Y ) E(XY)=E(X)\cdot E(Y) E(XY)=E(X)E(Y)


【例4】
N N N件产品,其中 M M M件次品,任取 n n n件( n ≤ M ≤ N n\leq M\leq N nMN),求次品数的期望。

解:
为次品编号1-M件,定义 X i = { 1 第 i 件 次 品 取 到 0 第 i 件 次 品 未 取 到 , i = 1 , 2 , 3 , ⋯   , m X_i=\begin{cases} 1 & 第i件次品取到\\ 0 & 第i件次品未取到 \end{cases},i=1,2,3,\cdots,m Xi={10iii=1,2,3,,m
X X X表示次品总数,则 X = X 1 + X 2 + ⋯ + X M X=X_1+X_2+\cdots+X_M X=X1+X2++XM

P ( X i = 1 ) = n N P(X_i=1)=\displaystyle\frac{n}{N} P(Xi=1)=Nn
P ( X i = 0 ) = 1 − n N P(X_i=0)=1-\displaystyle\frac{n}{N} P(Xi=0)=1Nn

E ( X i ) = 1 × n N = n N E(X_i)=\displaystyle1\times\frac{n}{N}=\frac{n}{N} E(Xi)=1×Nn=Nn
E ( X ) = E ( X 1 ) + ⋯ + E ( X M ) = n N M E(X)=E(X_1)+\cdots+E(X_M)=\displaystyle\frac{n}{N}M E(X)=E(X1)++E(XM)=NnM

4.1.5 条件期望

定义:一个变量取某个值的前提下,另一个变量的期望

离散型

E ( X ∣ Y = y j ) = ∑ x i P ( X = x i ∣ Y = y j ) E(X|Y=y_j)=\displaystyle\sum x_iP(X=x_i|Y=y_j) E(XY=yj)=xiP(X=xiY=yj)
E ( Y ∣ X = x i ) = ∑ y j P ( Y = y j ∣ X = x i ) E(Y|X=x_i)=\displaystyle\sum y_jP(Y=y_j|X=x_i) E(YX=xi)=yjP(Y=yjX=xi)


X \ Y 1 2 3 0 0.1 0.2 0.3 1 0.2 0.1 0.1 \begin{array}{c|c} X\backslash Y & 1 & 2 & 3\\ \hline 0 & 0.1 & 0.2 & 0.3\\ 1 & 0.2 & 0.1 & 0.1 \end{array} X\Y0110.10.220.20.130.30.1

则:
Y 1 2 3 P ( Y ∣ X = 1 ) 0.5 0.25 0.25 \begin{array}{c|c} Y & 1 & 2 & 3\\ \hline P(Y|X=1) & 0.5 & 0.25 & 0.25 \end{array} YP(YX=1)10.520.2530.25

E ( Y ∣ X = 1 ) = 1 × 0.5 + 2 × 0.25 + 3 × 0.25 = 1.75 E(Y|X=1)=1\times0.5+2\times0.25+3\times0.25=1.75 E(YX=1)=1×0.5+2×0.25+3×0.25=1.75

连续型

E ( X ∣ Y = y ) = ∫ − ∞ + ∞ x f ( x ∣ y ) d x E(X|Y=y)=\displaystyle\int_{-\infin}^{+\infin}xf(x|y)dx E(XY=y)=+xf(xy)dx
E ( Y ∣ X = x ) = ∫ − ∞ + ∞ y f ( y ∣ x ) d y E(Y|X=x)=\displaystyle\int_{-\infin}^{+\infin}yf(y|x)dy E(YX=x)=+yf(yx)dy

4.2.1 方差

偏离程度

方差: D ( X ) = E ( ( X − E X ) 2 ) D(X)=E((X-EX)^2) D(X)=E((XEX)2)
标准差: D ( X ) \sqrt{D(X)} D(X)

  1. 离散型: D ( X ) = ∑ k ( x k − E ( X ) ) 2 P k D(X)=\displaystyle\sum_k(x_k-E(X))^2P_k D(X)=k(xkE(X))2Pk
  2. 连续型: D ( X ) = ∫ − ∞ + ∞ ( x − E ( X ) ) 2 f ( x ) d x D(X)=\displaystyle\int_{-\infin}^{+\infin}(x-E(X))^2f(x)dx D(X)=+(xE(X))2f(x)dx

常用公式: D ( X ) = E ( X 2 ) − E ( X ) 2 D(X)=E(X^2)-E(X)^2 D(X)=E(X2)E(X)2


【例2】
f ( x ) = { 2 x 0 < x < 1 0 e l s e f(x)=\begin{cases} 2x & 0<x<1\\ 0 & else \end{cases} f(x)={2x00<x<1else
D ( X ) D(X) D(X)

解:
E ( X ) = ∫ 0 1 x ⋅ 2 x d x = 2 3 E(X)=\displaystyle\int_0^1x\cdot 2xdx=\frac{2}{3} E(X)=01x2xdx=32
E ( X 2 ) = ∫ 0 1 x 2 ⋅ 2 x d x = 1 2 E(X^2)=\displaystyle\int_0^1x^2\cdot 2xdx=\frac{1}{2} E(X2)=01x22xdx=21
D ( X ) = E ( X 2 ) − E ( X ) 2 = 1 18 D(X)=E(X^2)-E(X)^2=\displaystyle\frac{1}{18} D(X)=E(X2)E(X)2=181

【例3】
f ( x ) = { a x 2 + b x + c 0 < x < 1 0 e l s e f(x)=\begin{cases} ax^2+bx+c & 0<x<1\\ 0 & else \end{cases} f(x)={ax2+bx+c00<x<1else
已知: E ( X ) = 0.5 , D ( X ) = 0.15 E(X)=0.5,D(X)=0.15 E(X)=0.5,D(X)=0.15,求参数

解:
由题意,得:
∫ 0 1 ( a x 2 + b x + c ) d x = 1 \displaystyle\int_0^1(ax^2+bx+c)dx=1 01(ax2+bx+c)dx=1
E ( X ) = ∫ 0 1 x ( a x 2 + b x + c ) d x = 1 2 E(X)=\displaystyle\int_0^1x(ax^2+bx+c)dx=\frac{1}{2} E(X)=01x(ax2+bx+c)dx=21
E ( X 2 ) = ∫ 0 1 x 2 ( a x 2 + b x + c ) d x = a 5 + b 4 + c 3 E(X^2)=\displaystyle\int_0^1x^2(ax^2+bx+c)dx=\frac{a}{5}+\frac{b}{4}+\frac{c}{3} E(X2)=01x2(ax2+bx+c)dx=5a+4b+3c

整理得方程组:
{ a 4 + b 3 + c 2 = 0.5 a 5 + b 4 + c 3 = 0.4 a 3 + b 2 + c = 1 \begin{cases} \displaystyle\frac{a}{4}+\frac{b}{3}+\frac{c}{2}=0.5\\ \displaystyle\frac{a}{5}+\frac{b}{4}+\frac{c}{3}=0.4\\ \displaystyle\frac{a}{3}+\frac{b}{2}+c=1 \end{cases} 4a+3b+2c=0.55a+4b+3c=0.43a+2b+c=1

解得: a = 12 , b = − 12 , c = 3 a=12,b=-12,c=3 a=12,b=12,c=3

4.2.2 方差的性质

  1. D ( C ) = 0 D(C)=0 D(C)=0
  2. D ( X + C ) = D ( X ) D(X+C)=D(X) D(X+C)=D(X)
  3. D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X)
  4. D ( k X + b ) = k 2 D ( X ) D(kX+b)=k^2D(X) D(kX+b)=k2D(X)
  5. X Y XY XY独立时, D ( X ± Y ) = D X + D Y D(X\pm Y)=DX+DY D(X±Y)=DX+DY
    推论:当 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn独立时, D ( X 1 ± X 2 ± ⋯ ± X n ) = D X 1 + ⋯ + D X n D(X_1\pm X_2\pm\cdots\pm X_n)=DX_1+\cdots+DX_n D(X1±X2±±Xn)=DX1++DXn
  6. D ( X ) = 0    ⟺    P ( X = E ( X ) ) = 1 D(X)=0\iff P(X=E(X))=1 D(X)=0P(X=E(X))=1

标准化:令 X ∗ = X − E ( X ) D X X^*=\displaystyle\frac{X-E(X)}{\sqrt{DX}} X=DX XE(X),则一定有: E ( X ∗ ) = 0 , D ( X ∗ ) = 1 E(X^*)=0,D(X^*)=1 E(X)=0,D(X)=1

4.3.1 常见离散型的期望和方差

分 布 定 义 E ( X ) D ( X ) 0 − 1 分 布 P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 p p q 二 项 分 布 P ( X = k ) = C n k p k q n − k , k = 0 , 1 , ⋯   , n n p n p q 几 何 分 布 P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , ⋯ 1 p 1 − p p 2 泊 松 分 布 P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , ⋯ λ λ 均 匀 分 布 f ( x ) = { 1 b − a x ∈ [ a , b ] 0 e l s e a + b 2 ( b − a ) 2 12 指 数 分 布 f ( x ) = { λ e − λ x x > 0 0 e l s e 1 λ 1 λ 2 正 态 分 布 ϕ ( x ) = 1 2 π σ e ( x − μ ) 2 2 σ 2 μ σ 2 \begin{array}{|c|c|c|c|} 分布 & 定义 & E(X) & D(X)\\ \hline 0-1分布 & P(X=k)=p^k(1-p)^{1-k},k=0,1 & p & pq\\ \hline 二项分布 & P(X=k)=C_n^kp^kq^{n-k},k=0,1,\cdots,n & np & npq\\ \hline 几何分布 & P(X=k)=(1-p)^{k-1}p,k=1,2,\cdots & \displaystyle\frac{1}{p} & \displaystyle\frac{1-p}{p^2}\\ \hline 泊松分布 & P(X=k)=\displaystyle\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,\cdots & \lambda & \lambda\\ \hline 均匀分布 & f(x)=\begin{cases} \displaystyle\frac{1}{b-a} & x\in[a,b]\\ 0 & else \end{cases} & \displaystyle\frac{a+b}{2} & \displaystyle\frac{(b-a)^2}{12}\\ \hline 指数分布 & f(x)=\begin{cases} \lambda e^{-\lambda x} & x>0\\ 0 & else \end{cases} & \displaystyle\frac{1}{\lambda} & \displaystyle\frac{1}{\lambda^2}\\ \hline 正态分布 & \phi(x)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}} & \mu & \sigma^2 \end{array} 01P(X=k)=pk(1p)1k,k=0,1P(X=k)=Cnkpkqnk,k=0,1,,nP(X=k)=(1p)k1p,k=1,2,P(X=k)=k!λkeλ,k=0,1,f(x)=ba10x[a,b]elsef(x)={λeλx0x>0elseϕ(x)=2π σ1e2σ2(xμ)2E(X)pnpp1λ2a+bλ1μD(X)pqnpqp21pλ12(ba)2λ21σ2

4.4.1 协方差

定义: C o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] Cov(X,Y)=E[(X-E(X))(Y-E(Y))] Cov(X,Y)=E[(XE(X))(YE(Y))]

C o v ( X , Y ) = E ( X Y − X E ( Y ) − Y E ( X ) + E ( X ) E ( Y ) ) = E ( X Y ) − E ( Y ) E ( X ) − E ( X ) E ( Y ) + E ( X ) E ( Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY-XE(Y)-YE(X)+E(X)E(Y))=E(XY)-E(Y)E(X)-E(X)E(Y)+E(X)E(Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XYXE(Y)YE(X)+E(X)E(Y))=E(XY)E(Y)E(X)E(X)E(Y)+E(X)E(Y)=E(XY)E(X)E(Y)
(常用计算公式)

D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X\pm Y)=D(X)+D(Y)\pm 2Cov(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)


X \ Y − 1 0 1 − 1 1 8 1 8 1 8 0 1 8 0 1 8 1 1 8 1 8 1 8 \begin{array}{c|c} X\backslash Y & -1 & 0 & 1\\ \hline -1 & \displaystyle\frac{1}{8} & \displaystyle\frac{1}{8} & \displaystyle\frac{1}{8}\\ 0 & \displaystyle\frac{1}{8} & 0 & \displaystyle\frac{1}{8}\\ 1& \displaystyle\frac{1}{8} & \displaystyle\frac{1}{8} & \displaystyle\frac{1}{8} \end{array} X\Y10118181810810811818181

X Y XY XY独立,求 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)

解:
由题意,有:
X − 1 0 1 P 3 8 1 4 3 8 \begin{array}{c|c} X & -1 & 0 & 1\\ \hline P & \displaystyle\frac{3}{8} & \displaystyle\frac{1}{4} & \displaystyle\frac{3}{8} \end{array} XP183041183

Y − 1 0 1 P 3 8 1 4 3 8 \begin{array}{c|c} Y & -1 & 0 & 1\\ \hline P & \displaystyle\frac{3}{8} & \displaystyle\frac{1}{4} & \displaystyle\frac{3}{8} \end{array} YP183041183

计算得:
E ( X ) = 0 , E ( Y ) = 0 E(X)=0,E(Y)=0 E(X)=0,E(Y)=0
E ( X Y ) = 0 E(XY)=0 E(XY)=0


C o v ( X , Y ) = 0 − 0 = 0 Cov(X,Y)=0-0=0 Cov(X,Y)=00=0

【例2】
f ( x , y ) = { x + y 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 0 e l s e f(x,y)=\begin{cases} x+y & 0\leq x\leq1,0\leq y\leq1\\ 0 & else \end{cases} f(x,y)={x+y00x1,0y1else
C o v ( X , Y ) Cov(X,Y) Cov(X,Y)

解:
f X ( x ) = { x + 1 2 0 ≤ x ≤ 1 0 e l s e f_X(x)=\begin{cases} x+\displaystyle\frac{1}{2} & 0\leq x\leq1\\ 0 & else \end{cases} fX(x)=x+2100x1else
f Y ( y ) = { y + 1 2 0 ≤ y ≤ 1 0 e l s e f_Y(y)=\begin{cases} y+\displaystyle\frac{1}{2} & 0\leq y\leq1\\ 0 & else \end{cases} fY(y)=y+2100y1else

E ( X ) = 7 12 , E ( Y ) = 7 12 E(X)=\displaystyle\frac{7}{12},E(Y)=\displaystyle\frac{7}{12} E(X)=127,E(Y)=127
E ( X Y ) = 1 3 E(XY)=\displaystyle\frac{1}{3} E(XY)=31

故:
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) = − 1 144 Cov(X,Y)=E(XY)-E(X)E(Y)=-\displaystyle\frac{1}{144} Cov(X,Y)=E(XY)E(X)E(Y)=1441

协方差的性质:

  1. C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
  2. C o v ( a X , b Y ) = a b ⋅ C o v ( X , Y ) Cov(aX,bY)=ab\cdot Cov(X,Y) Cov(aX,bY)=abCov(X,Y)
  3. C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
  4. C o v ( C , X ) = 0 Cov(C,X)=0 Cov(C,X)=0
  5. X Y XY XY独立时, C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0

协方差 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)表示 X Y XY XY的关系,受到计量单位的影响

标准化:
X ∗ = X − E ( X ) D ( X ) X^*=\displaystyle\frac{X-E(X)}{\sqrt{D(X)}} X=D(X) XE(X)
Y ∗ = Y − E ( Y ) D ( Y ) Y^*=\displaystyle\frac{Y-E(Y)}{\sqrt{D(Y)}} Y=D(Y) YE(Y)

C o v ( X ∗ , Y ∗ ) = E ( X ∗ Y ∗ ) − E ( X ∗ ) E ( Y ∗ ) = E ( X − E ( X ) D ( X ) Y − E ( Y ) D ( Y ) ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] D ( X ) D ( Y ) = C o v ( X , Y ) D ( X ) D ( Y ) = ρ Cov(X^*,Y^*)=E(X^*Y^*)-E(X^*)E(Y^*)=E(\displaystyle\frac{X-E(X)}{\sqrt{D(X)}}\frac{Y-E(Y)}{\sqrt{D(Y)}})=\frac{E[(X-E(X))(Y-E(Y))]}{\sqrt{D(X)}\sqrt{D(Y)}}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=\rho Cov(X,Y)=E(XY)E(X)E(Y)=E(D(X) XE(X)D(Y) YE(Y))=D(X) D(Y) E[(XE(X))(YE(Y))]=D(X) D(Y) Cov(X,Y)=ρ

4.4.2 相关系数

ρ = C o v ( X , Y ) D ( X ) D ( Y ) = E ( X Y ) − E ( X ) E ( Y ) D ( X ) D ( Y ) \displaystyle\rho=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=\frac{E(XY)-E(X)E(Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ=D(X) D(Y) Cov(X,Y)=D(X) D(Y) E(XY)E(X)E(Y)
C o v ( X , Y ) Cov(X,Y) Cov(X,Y)同正同负同0


【例2】
D ( X ) = 4 , D ( Y ) = 9 , ρ = 0.5 D(X)=4,D(Y)=9,\rho=0.5 D(X)=4,D(Y)=9,ρ=0.5,求 D ( X − Y ) D(X-Y) D(XY)

解:
C o v ( X , Y ) = ρ D ( X ) D ( Y ) = 3 Cov(X,Y)=\rho\sqrt{D(X)}\sqrt{D(Y)}=3 Cov(X,Y)=ρD(X) D(Y) =3
D ( X − Y ) = D ( X ) + D ( Y ) − 2 C o v ( X , Y ) = 7 D(X-Y)=D(X)+D(Y)-2Cov(X,Y)=7 D(XY)=D(X)+D(Y)2Cov(X,Y)=7

性质: ∣ ρ ∣ ≤ 1 |\rho|\leq1 ρ1
引理: [ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) [E(XY)]^2\leq E(X^2)E(Y^2) [E(XY)]2E(X2)E(Y2)(柯西-施瓦兹 不等式)

证:
g ( t ) = E ( ( t X − Y ) 2 ) = E ( t 2 X 2 − 2 t X Y + Y 2 ) = t 2 E ( X 2 ) − 2 t E ( X Y ) + E ( Y 2 ) ≤ 0 g(t)=E((tX-Y)^2)=E(t^2X^2-2tXY+Y^2)=t^2E(X^2)-2tE(XY)+E(Y^2)\leq0 g(t)=E((tXY)2)=E(t2X22tXY+Y2)=t2E(X2)2tE(XY)+E(Y2)0
上式可转化为一元二次函数形式,考虑函数图像,可得:
Δ = 4 [ E ( X Y ) ] 2 − 4 E ( X 2 ) E ( Y 2 ) > 0 \Delta=4[E(XY)]^2-4E(X^2)E(Y^2)>0 Δ=4[E(XY)]24E(X2)E(Y2)>0
[ E ( X Y ) ] 2 ≤ E ( X 2 ) E ( Y 2 ) [E(XY)]^2\leq E(X^2)E(Y^2) [E(XY)]2E(X2)E(Y2)
引理得证

欲证 ∣ ρ ∣ ≤ 1 |\rho|\leq1 ρ1,只需 ρ 2 ≤ 1 \rho^2\leq1 ρ21
X 1 = X − E ( X ) , Y 1 = Y − E ( Y ) X_1=X-E(X),Y_1=Y-E(Y) X1=XE(X),Y1=YE(Y)
ρ 2 = [ E ( ( X − E ( X ) ) ( Y − E ( Y ) ) ) ] 2 D ( X ) D ( Y ) = [ E ( X 1 Y 1 ) ] 2 E ( X 1 2 ) E ( Y 1 2 ) ≤ 1 \rho^2=\displaystyle\frac{[E((X-E(X))(Y-E(Y)))]^2}{D(X)D(Y)}=\frac{[E(X_1Y_1)]^2}{E(X_1^2)E(Y_1^2)}\leq1 ρ2=D(X)D(Y)[E((XE(X))(YE(Y)))]2=E(X12)E(Y12)[E(X1Y1)]21
上述性质得证

定理: ∣ ρ ∣ = 1    ⟺    |\rho|=1\iff ρ=1 X X X Y Y Y P = 1 P=1 P=1成线性关系(即 P ( Y = a X + b ) = 1 P(Y=aX+b)=1 P(Y=aX+b)=1

  • ρ = 1 \rho=1 ρ=1,则称 X , Y X,Y X,Y完全正相关
  • ρ = − 1 \rho=-1 ρ=1,则称 X , Y X,Y X,Y完全负相关
  • ∣ ρ ∣ |\rho| ρ接近 0 0 0时,表示 X , Y X,Y X,Y线性关系弱
  • ρ = 0 \rho=0 ρ=0 X , Y X,Y X,Y不存在线性关系

概念区分:
X , Y X,Y X,Y不相关”——指 X , Y X,Y X,Y线性不相关
X , Y X,Y X,Y独立”——指 X , Y X,Y X,Y没有任何关系(包括线性、非线性)

  • X , Y X,Y X,Y独立,则 X , Y X,Y X,Y不相关
  • X , Y X,Y X,Y不相关,则 X , Y X,Y X,Y不一定独立

特例:对于二维正态分布 ( X , Y ) (X,Y) (X,Y),独立与不相关是等价的

4.5 中心距与原点矩

中心距: E [ ( X − E ( X ) ) k ] E[(X-E(X))^k] E[(XE(X))k](以 E ( X ) E(X) E(X)为中心)
原点矩: E ( X k ) = E [ ( X − 0 ) k ] E(X^k)=E[(X-0)^k] E(Xk)=E[(X0)k]
(期望 E ( X ) E(X) E(X)又称一阶原点矩)

一阶中心距: E ( X − E ( X ) ) = E ( X ) − E ( X ) = 0 E(X-E(X))=E(X)-E(X)=0 E(XE(X))=E(X)E(X)=0
二阶中心距:$E[(X-E(X))^2],即方差

原点矩:

  1. 离散型
    ∑ x i k P i \displaystyle\sum x_i^kP_i xikPi
  2. 连续型
    ∫ − ∞ + ∞ x k f ( x ) d x \displaystyle\int_{-\infin}^{+\infin}x^kf(x)dx +xkf(x)dx

中心矩:

  1. 离散型
    ∑ ( x i − E ( X ) ) k P i \displaystyle\sum (x_i-E(X))^kP_i (xiE(X))kPi
  2. 连续型
    ∫ − ∞ + ∞ ( x − E ( X ) ) k f ( x ) d x \displaystyle\int_{-\infin}^{+\infin}(x-E(X ))^kf(x)dx +(xE(X))kf(x)dx

高于4阶的矩极少使用

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值