[ZCMU OJ]1276/1226: 求和游戏(序列中指定元素个数的最大和)

该博客讨论了一种与最大子序列和问题相似的算法题目。小明需要从一串数字中选择两个球,使得这两个球及它们之间的数字之和最大。如果这个和不为正,则输出"GameOver"。博主给出了C++代码实现,通过动态规划求解最大和,并处理负数情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

小明有n个球排成一行,每个球上有个数字。现在小明选择两个球,使这两个球及其这两个球之间的数字和最大。如果这个最大的和不为正,则输出“Game Over”。

Input

第一行输入T,有T组数据。

每组数据:输入n(1<n<1000000 ),再输入n个整数,表示第1个球到第n个球上的数字,每个球上的数字大于-100,小于100。

Output

对于每组数据,输出最大和或者”Game Over“,占一行。

Sample Input

6

5

3 -5 7 -2 8

3

-1 2 3

4

-1 1 -111 1111

3

-1 -2 -3

3

1 -1 0

6

100 -1 -1 -1 -1 -1 -1

Sample Output

13

5

1001

Game Over

Game Over

99

HINT

Source

SJTU

_____________________________________________________________________________

这道题和最大子序列和有异曲同工之处。

利用temp保存第一个与第二个数之和。若temp大于第二个数,说明第一(二)个数是大于0的数;反之,说明第一(二)个数是小于0的数,则跳过第一个数,保存第二个数与第三个数之和。以此类推;并随时记录temp的最大值。

#include<bits/stdc++.h>
const int maxn=1e6+10;
double a[maxn]={0};
using namespace std;
int main()
{
	int T;
	cin>>T;
	while(T--)
	{
		int n;
		cin>>n;
		for(int i=0;i<n;i++)
		cin>>a[i];
		
		int temp=a[0]+a[1];
		int max=temp;//细节 
		
		for(int i=1;i<n-1;i++)
		{
			if(temp>a[i])
			temp+=a[i+1];
			else
			temp=a[i]+a[i+1];
			
			if(temp>max)
			max=temp;
		}

		if(max>0) 
		cout<<max<<endl;
		else
		cout<<"Game Over"<<endl;		
	}
}

当前提供的引用内容并未提及 ZCMU OJ 的题目编号 52131。因此无法直接通过现有引用获取其具体细节或解决方案[^4]。 通常情况下,在解决 OJ 平台上的问题时,可以遵循以下方法来分析和解决问题: ### 题目解析流程 #### 数据结构与算法的选择 对于未明确描述的题目,可以根据常见题型推测可能涉及的数据结构和算法。例如: - 如果涉及到字符串操作,则需考虑大小写敏感性以及特殊字符处理[^1]。 - 若为图论相关问题(如 Domino 倒下模拟),则可采用并查集或其他连通性算法进行求解[^2]。 - 对于最大子数组和等问题,动态规划可能是有效的工具之一[^3]。 以下是基于假设的一个通用框架用于解决潜在类似的编程挑战: ```python def solve_problem(input_data): """ 解决特定输入数据下的计算逻辑 参数: input_data (list): 输入参数列表 返回值: result : 计算后的结果 """ # 初始化变量 n = len(input_data) # 动态规划表初始化 dp = [0]*n dp[0] = max_sum = input_data[0] for i in range(1,n): # 更新状态转移方程 dp[i] = max(dp[i-1]+input_data[i], input_data[i]) # 跟踪全局最优解 if dp[i]>max_sum: max_sum=dp[i] return max_sum ``` 此代码片段仅作为示范用途,并不一定适用于实际编号为 `52131` 的题目情境。 ### 注意事项 当面对新类型的竞赛题目时,请务必仔细阅读原题说明文档,理解边界条件、时间复杂度需求等因素后再着手编写程序实现方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值