《线性代数:行列式》: 克拉默法则

本文深入讲解了克拉默法则,阐述了非齐次线性方程组及齐次线性方程组的解的存在性和唯一性条件。当系数行列式不为零时,非齐次方程组有唯一解,齐次方程组则仅有零解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

克拉默法则

若 n 个方程 n 个未知量构成的非齐次线性方程组

\left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+...+a_{1n}x_{n}=b_{1}\\ a_{21}x_{1}+a_{22}x_{2}+...+a_{2n}x_{n}=b_{2}\\ ...\\ a_{n1}x_{1}+a_{n2}x_{2}+...+a_{nn}x_{n}=b_{n} \end{matrix}\right.

的系数行列式 |A| 不等于0,则方程有唯一解,且

x_{i}=\frac{|A_{i}|}{|A|}\quad i=1,2,3,...,n

其中 |Ai| 是 |A| 中第 i 列元素(即 xi 的系数)替换成方程组右端的常数项 b1,b2,b3,...,bn 后所构成的行列式

 

推论

若包含 n 个方程 n 个未知量的齐次线性方程组的系数行列式 |A| 不等于0 ,则方程组有唯一零解。反之,若齐次线性方程组有非零解,则系数行列式 |A|=0

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值