本文是《TensorFlow从浅入深》系列之第1篇
【TensorFlow】TensorFlow从浅入深系列之一 -- 教你如何设置学习率(指数衰减法)
在训练神经网络时,需要设置学习率(learning rate)控制参数更新的速度 。学习率决定了参数每次更新的幅度 。如果幅度过大,
那么可能导致参数在极优值的两侧来回移动。如优化 函数,在优化中使用的学习率为1,则整个优化过程表4-1所示:
从表格可以看出,无论进行多少轮法代,参数将在 5 和,5 之间摇摆,而不会收敛到一个极小值 。
相反,当学习率过小时,虽然能保证收敛性,但是这会大大降低优化速度 。我们会需要更多轮的法代才能达到一个比较理想的优化效果 。
所以学习率既不能过大,也不能过小 。为了解决设定学习率的问题, TensorFlow提供了 一种更加灵活的学习率设置方法一一指数衰减法。