最近一直在研究tensorflow的fine-tuning,TF关于fine-tuning这块的资料真的没有Caffe多。经过这几天的琢磨,差不多也明白了。感谢网上为数不多的开源资料。
主要方法有如下两种:
一、从graph处入手
这个方案的灵感来自于:https://www.cnblogs.com/sikyadjy/p/6861692.html
这里我重新概括下原作者的三步走:
1) 先输出层的参数变量
variables_names = [v.name for v in tf.trainable_variables()]
values = sess.run(variables_names)
for k, v in zip(variables_names, values):
print "Variable: ", k
print "Shape: ", v.shape
print v
2)设置前后层的学习率
比如要对前20层的参数使用较低的学习率微调(20层大概有40种参数,20个weight,20个bia)
var1 = tf.trainable_variables()[0:40]
var2 = tf.trainable_variables()[40:]
train_op1 = GradientDescentOptimizer(0.00001).minimize(loss, var_list=var1)
train_op2 = GradientDescentOptimizer(0.0001).minimize(loss, var_list=var2)
train_op = tf.group(train_op1, train_op2)
3)加载预训练的model进行fine-tuning
注意:(Note:)
在我的实验中,按照原作者的方法,我把预训练的ckpt加载的时侯,总是出错。
总结了一下,原因可能出现在graph中,在fine-tuning中,设置了两个train_op1, train_op2,然而我预训练好的model中只有一个train_op,在这里可能无法对应,导致加载权重的时候出错。
**更改如下:**在预训练的时候也设置成两个train_op,不过将学习率调整成一致。重新训练model,然后便可以加载了。
总结:这种方法明显会有限制,导致之前的pretrained的model的graph必须按照fine-tuning来调节
二、从反向梯度入手
这个灵感来自于:http://blog.csdn.net/liyuan123zhouhui/article/details/69569493
这