持续更新Github:
https://github.com/Sophia-11/Awesome-CVPR-Paper
2021持续论文集锦百度云请在【计算机视觉联盟】后台回复 CVPR2021
往年论文集锦请在【计算机视觉联盟】后台回复 CVPR2019
2020持续论文集锦请在【计算机视觉联盟】后台回复 CVPR2020
CVPR 2021论文
- Image-to-image Translation via Hierarchical Style Disentanglement Xinyang Li, Shengchuan Zhang, Jie Hu, Liujuan Cao, Xiaopeng Hong, Xudong Mao, Feiyue Huang, Yongjian Wu, Rongrong Ji https://arxiv.org/abs/2103.01456 https://github.com/imlixinyang/HiSD
- FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation https://arxiv.org/pdf/2012.08512.pdf https://tarun005.github.io/FLAVR/Code https://tarun005.github.io/FLAVR/
- Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford, Tobias Fischer https://arxiv.org/abs/2103.01486
- Depth from Camera Motion and Object Detection Brent A. Griffin, Jason J. Corso https://arxiv.org/abs/2103.01468
- UP-DETR: Unsupervised Pre-training for Object Detection with Transformers https://arxiv.org/pdf/2011.09094.pdf
- Multi-Stage Progressive Image Restoration https://arxiv.org/abs/2102.02808 https://github.com/swz30/MPRNet
- Weakly Supervised Learning of Rigid 3D Scene Flow https://arxiv.org/pdf/2102.08945.pdf https://arxiv.org/pdf/2102.08945.pdf https://3dsceneflow.github.io/
- Exploring Complementary Strengths of Invariant and Equivariant Representations for Few-Shot Learning Mamshad Nayeem Rizve, Salman Khan, Fahad Shahbaz Khan, Mubarak Shah https://arxiv.org/abs/2103.01315
- Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels https://arxiv.org/abs/2101.05022 https://github.com/naver-ai/relabel_imagenet
- Rethinking Channel Dimensions for Efficient Model Design https://arxiv.org/abs/2007.00992 https://github.com/clovaai/rexnet
- Coarse-Fine Networks for Temporal Activity Detection in Videos Kumara Kahatapitiya, Michael S. Ryoo https://arxiv.org/abs/2103.01302
- A Deep Emulator for Secondary Motion of 3D Characters Mianlun Zheng, Yi Zhou, Duygu Ceylan, Jernej Barbic https://arxiv.org/abs/2103.01261
- Fair Attribute Classification through Latent Space De-biasing https://arxiv.org/abs/2012.01469 https://github.com/princetonvisualai/gan-debiasing https://princetonvisualai.github.io/gan-debiasing/
- Auto-Exposure Fusion for Single-Image Shadow Removal Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu, Hongkai Yu, Wei Feng, Yang Liu, Song Wang https://arxiv.org/abs/2103.01255
- Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling https://arxiv.org/pdf/2102.06183.pdf https://github.com/jayleicn/ClipBERT
- MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing Zhengjue Wang, Hao Zhang, Ziheng Cheng, Bo Chen, Xin Yuan https://arxiv.org/abs/2103.01786
- AttentiveNAS: Improving Neural Architecture Search via Attentive https://arxiv.org/pdf/2011.09011.pdf
- Diffusion Probabilistic Models for 3D Point Cloud Generation Shitong Luo, Wei Hu https://arxiv.org/abs/2103.01458
- There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge Francisco Rivera Valverde, Juana Valeria Hurtado, Abhinav Valada https://arxiv.org/abs/2103.01353 http://rl.uni-freiburg.de/research/multimodal-distill
- Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation https://arxiv.org/abs/2008.00951 https://github.com/eladrich/pixel2style2pixel https://eladrich.github.io/pixel2style2pixel/
- Hierarchical and Partially Observable Goal-driven Policy Learning with Goals Relational Graph Xin Ye, Yezhou Yang https://arxiv.org/abs/2103.01350
- RepVGG: Making VGG-style ConvNets Great Again https://arxiv.org/abs/2101.03697 https://github.com/megvii-model/RepVGG
- Transformer Interpretability Beyond Attention Visualization https://arxiv.org/pdf/2012.09838.pdf https://github.com/hila-chefer/Transformer-Explainability
- PREDATOR: Registration of 3D Point Clouds with Low Overlap https://arxiv.org/pdf/2011.13005.pdf https://github.com/ShengyuH/OverlapPredator https://overlappredator.github.io/
CVPR 2020
致力于计算机视觉和模式识别包括颜色检测、跟踪、运动、物体识别、音响和目标检测。
CVPR 2020涵盖的话题:
- 分段和分组
- 运动和跟踪
- 人类的认识
- Shape-from-X
- 音响和结构与运动
- 颜色和纹理
- 照明和反射建模
- 基于图像的建模
- 传感器
- 形状表示和匹配
- 计算摄影和视频
- 早期和生物启发的愿景
- 视频分析和事件识别
- 优化方法
- 脸和姿态分析
- 视频监控
- 现场了解
- 图像和视频检索
- 医学图像分析
- 对机器人的愿景
- 对图形的愿景
- 统计方法和学习
- 计算机视觉的应用
- 文档分析
- 对象识别/检测/分类
CVPR--IEEE Conference on Computer Vision and Pattern Recognition
Location: United States
Date: June 2020
Deadline: TBD, about Nov
CVPR 2020 将在西雅图举行,时间是 6 月 13-19 日。
大会主席是 Gerard Medioni(南加州大学 & 亚马逊研究负责人,Amazon Go),Ramin Zabih(康奈尔大学)和 Terry Boult(科罗拉多斯普林斯分校);程序主席是刘策(谷歌 & MIT)、Greg Mori(加拿大西蒙弗雷泽大学),Kate Saenko(波士顿大学)和 Silvio Savarese(斯坦福大学)。
其中,华人程序主席刘策清华大学本硕,在 MIT 取得博士学位(CSAIL),2014 年加入谷歌,现任资深研究科学家。除了出任 CVPR 2020 联席程序主席,刘策还在 CVPR 2017 和 ICCV 2015 担任领域主席。
论文录用列表
论文录用接收列表:
http://cvpr2020.thecvf.com/sites/default/files/2020-02/accepted_list.txt
计算机视觉三大顶会之一CVPR2020接收结果已经公布,一共有1470篇论文被接收,接收率为22%,相比去年降低3个百分点,竞争越来越激烈。
计算机视觉顶会CVPR2020官方今日发布接收论文列表(编号):
http://cvpr2020.thecvf.com/sites/default/files/2020-02/accepted_list.txt
虽然我们目前还只能看到官方公布的接收论文ID,具体的接收论文还不清楚,但部分作者已经展示了自己被接收的工作,有些更是已经放出了开源代码。因此,经过小编的努力,我们收集了一批论文以及来自作者的介绍(因为无官方通知,如有错误,欢迎指出),列表如下,大家可以先去阅读一番了。
1. 视觉常识R-CNN,Visual Commonsense R-CNN
https://arxiv.org/abs/2002.12204
2. Out-of-distribution图像检测
https://arxiv.org/abs/2002.11297
3. 模糊视频帧插值,Blurry Video Frame Interpolation
https://arxiv.org/abs/2002.12259
4. 元迁移学习零样本超分
https://arxiv.org/abs/2002.12213
5. 3D室内场景理解
https://arxiv.org/abs/2002.12212
6.从有偏训练生成无偏场景图
https://arxiv.org/abs/2002.11949
7. 自动编码双瓶颈哈希
https://arxiv.org/abs/2002.11930
8. 一种用于人类轨迹预测的社会时空图卷积神经网络
https://arxiv.org/abs/2002.11927
9. 面向面向深度人脸识别的通用表示学习
https://arxiv.org/abs/2002.11841
10. 视觉表示泛化性
https://arxiv.org/abs/1912.03330
11. 减弱上下文偏差
https://arxiv.org/abs/2002.11812
12. 可迁移元技能的无监督强化学习
https://arxiv.org/abs/1911.07450
13. 快速准确时空视频超分
https://arxiv.org/abs/2002.11616
14. 对象关系图Teacher推荐学习的视频captioning
https://arxiv.org/abs/2002.11566
15. 弱监督物体定位路由再思考
https://arxiv.org/abs/2002.11359
16. 通过预培训学习视觉和语言导航的通用代理
https://arxiv.org/pdf/2002.10638.pdf
17. GhostNet轻量级神经网络
https://arxiv.org/pdf/1911.11907.pdf
18. AdderNet:在深度学习中,我们真的需要乘法吗?
https://arxiv.org/pdf/1912.13200.pdf
19. CARS:高效神经结构搜索的持续进化
https://arxiv.org/abs/1909.04977
20. 通过协作式的迭代级联微调来移除单图像中的反射
https://arxiv.org/abs/1911.06634
https://github.com/Sophia-11/Awesome-CVPR-Paper
往年论文集锦请在【计算机视觉联盟】后台回复 CVPR2019
2020持续论文集锦请在【计算机视觉联盟】后台回复 CVPR2020
cvpr2019论文下载: