【TensorFlow】TensorFlow从浅入深系列之五 -- 教你详解滑动平均模型

本文是《TensorFlow从浅入深》系列之第5篇

TensorFlow从浅入深系列之一 -- 教你如何设置学习率(指数衰减法)

TensorFlow从浅入深系列之二 -- 教你通过思维导图深度理解深层神经网络

TensorFlow从浅入深系列之三 -- 教你如何对MNIST手写识别

TensorFlow从浅入深系列之四 -- 教你深入理解过拟合问题(正则化)

目录

滑动平均模型:

代码说明ExponentialMovingAverage用法:

ExponentialMovingAverage使用步骤:


滑动平均模型:

滑动平均模型一一可以便模型在测试数据上更健壮(robust)。

TensorFlow 中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型。在初始化ExponentialMovingAverage时,需要提供一个衰减率(decay)。这个衰减率将用于控制模型更新的速度。

ExponentialMovingAverage对每一个变量会维护一个影子变量(shadow variable),这个影子变量的初始值就是相应变量的初始值,而每次运行变量更新时,影子变量的值会更新为 :

                                       shadow_ variable = decay x shadow_ variable+ (1- decay)×variable

其中shadow_ variable为影子变量,variable为待更新的变量,decay为衰减率。从公式中可以看到,decay决定了模型更新的速度, decay 越大模型越趋于稳定。在实际应用中,decay一般会设成非常接近1的数(比如0.999 或0.9999)。

为了使得模型在训练前期可以更新得更快,ExponentialMovingAverage还提供了num_updates参数来动态设置decay的大小 。如果在ExponentialMovingAverage初始化时提供了num_updates参数,那么每次使用的衰减率将是 :


代码说明ExponentialMovingAverage用法:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import tensorflow as tf

# 定义一个变量用于计算滑动平均,这个变量的初始值为0,注意这里手动指定了变量的类型为float32,因为所需要计算滑动平均的变量必须是实数型
v1 = tf.Variable(0, dtype=tf.float32)
# 这里step变量模拟神经网络函数中迭代的轮数,可以用于动态控制衰减率
step = tf.Variable(0, trainable=False)

# 定义一个滑动平均的类,初始化时给定衰减率(0.99)和控制衰减变量的step
ema = tf.train.ExponentialMovingAverage(0.99, step)
# 定义一个更新变量滑动平均的操作。这里需要给定一个列表,每次执行这个操作时这个列表中的变量都会更新
maintain_average_op = ema.apply([v1])

with tf.Session() as sess:
    # 初始化所有变量
    init_op = tf.global_variables_initializer()
    sess.run(init_op)

    # 通过ema.average(v1)来获取滑动平均之后变量的取值。在初始化之后变量v1的值和v1的滑动平均都为0
    print(sess.run([v1, ema.average(v1)]))  # 输出[0.0, 0.0]

    # 更新变量v1的值到5
    sess.run(tf.assign(v1, 5))
    # 更新vl的值。衰减率为min{0.99 ,(l+step)/(lO+step)= 0.1)=0.l
    # 所以vl的滑动平均会被更新为0.1×0+0.9×5=4.5。
    sess.run(maintain_average_op)
    print(sess.run([v1, ema.average(v1)]))  # 输出[5.0, 4.5]

运行结果:

[0.0, 0.0]
[5.0, 4.5]

ExponentialMovingAverage使用步骤:

定义一个滑动平均的类,初始化衰减率(接近1)和控制衰减变量的step:ema = tf.train.ExponentialMovingAverage(0.99, step)

定义一个更新变量滑动平均的操作:maintain_average_op = ema.apply([变量]) 

获取滑动平均之后的取值:通过ema.average(变量)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值