干货| LeNet-5模型详解(附Python详细代码及注释)

LeNet-5模型是Yann LeCun教授与1998年在论文Gradient-based learning applied to document recognition中提出的,它是第一个成功应用于数字识别问题的卷积神经网络。在MNIST数据集上,LeNet-5模型可以达到大约99.2%的正确率。

LeNet-5模型总共有7层,下图展示了LeNet-5模型的架构。

LeNet-5模型结构图

下边详细介绍LeNet-5模型每一层的结构。

第一层,卷积层(C1)

这一层的输入就是原始的图像像素,LeNet-5模型接受的输入层大小为32x32x1。第一个卷积层过滤器的尺寸为5x5,深度为6不使用全0填充步长为1。因为没有使用全0填充,所以这 一 层的输出的尺寸为32-5+1=28深度为6。这 一 个卷积层总共有5x5x1x6+6=156 个参数,其中6个为偏置项参数。因为下一层的节点矩阵有28x28x6=4704个节点,每个节点和5x5=25个当前层节点相连,所以本层卷积层总共有4704x(25+1)= 122304个连接 。


第二层,池化层(S2)

这一层的输入为第一层的输出,是一个28x28x6的节点矩阵。本层采用的过滤器大小为2x2长和宽的步长均为2,所以本层的输出矩阵大小为14x14x6。


第三层,卷积层(C3)

本层的输入矩阵大小为14x14x6,使用的过滤器大小为5x5深度为16。本层不使用全0填充,步长为1。本层的输出矩阵大小为 10x10x16。按照标准的卷积层 ,本层应该有5x5x6x16+16=2416个参数,10x10x16(25+1)=41600个连接


第四层,池化层(S4)

本层的输入矩阵大小为10x10x16,采用的过滤器大小为2×2步长为2。本层的输出矩阵大小为5x5x16


第五次,卷积层(C5)

本层的输入矩阵大小为5x5x16,使用的过滤器的大小为5×5,深度为120,。本层不使用全0填充,步长为1.本层的输出矩阵大小为1x1x120。总共有5x5x16x120+120=48120个参数。

本层也可以作如下理解:

(本层的输入矩阵大小为5x5x16,因为过滤器的大小就是5×5,所以和全连接层没有区别,在之后的 TensorFlow 程序实现中也会将这一层看成全连接层。如果将5x5x16矩阵中的节点拉成一个向量,那么这一层和全连接层输入就一样了。)


第六层,全连接层(F6)

本层的输入节点个数为120个,输出节点个数为84个,总共参数为120x84+84=10164个。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值