Python实现共现矩阵及networkx可视化结果

本文介绍了如何使用Python构建共现矩阵,并利用NetworkX进行可视化。通过jieba分词处理文本,创建对角矩阵并计算关键词共现权重。在NetworkX中构建有向图,根据权重画出不同粗细的边,展示了节点间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现共现矩阵及networkx可视化结果

共现矩阵

共现矩阵:也称为共词矩阵,能表明两个词之间的关系程度

  • 首先假设我们有两句话,如下图所示,通过jieba分词和停用词词表过滤,我们可以得到以下结果:
test = ["E的B的C", "B的C的D"]

在这里插入图片描述

  • 接着我们可以通过关键词来构建共现矩阵,可以看到,BE同时出现一次,则其权重为1,BC同时出现两次,则其权重为2,以此类推
    在这里插入图片描述
  • 由此可以看出,共现矩阵是一个对角矩阵。
  • 共现矩阵的[0][0]为空。
  • 共现矩阵的第一行第一列是关键词。
  • 对角线全为0。
  • 共现矩阵其实是一个对称矩阵。

代码实现

# -*- coding: utf-8 -*-
import networkx as nx
import matplotlib.pyplot as plt
import jieba
import numpy as np

test = ["E的B的C", "B的C的D"]

stopwords = [line.strip() for line in
             open('stopwords_unduplicated.txt', encoding='UTF-8').readlines()]  # 停用词词表
cut_text1 = jieba.cut(test[0].replace(' ', ''))
cut_text2 = jieba.cut(test[1].replace(' ', ''))
results1 = []
for word in cut_text1:
    if word not in stopwords:
        if word != '\t':
            results1.append(word)
print("result1 is :", results1)

results2 = []
for word in cut_text2:
    if word not 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TonyHsuM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值