Abstract
HDU 4413 Logical Expression
乱搞 卡诺图
Body
Source
http://acm.hdu.edu.cn/showproblem.php?pid=4413
Description
给定N变量的所有2^N最小项,求一个符合所有最小项的最优美(长度最短的情况下字典序最小)的与或式。
Solution
天王还是太自信了……唉……
思路其实很简单。
复习一下卡诺图吧,考虑在卡诺图上圈一些圈,这些圈(可以重叠)覆盖且仅覆盖了所有为1的最小项,表达式就是这些圈项的或。
考虑卡诺图上的某个1,则所有覆盖这个1的非极大圈都不可能是最终答案的项,反证如下:假设某个覆盖这个1的非极大圈是最终答案的项,由于圈非极大,那么它一定属于某个极大圈,显然极大圈化简出的项长度比非极大圈要小。
于是所有可能的属于最终答案的项就是卡诺图上的所有极大圈。天王的错误就在于他只求出覆盖了每个1的最大(在所有极大圈中最优美)圈,这就相当于贪心,肯定是不对的(有可能某个非最大拼上其它的会更优)。这个地方不是很容易想明白,我也是试了一些数据才知道。
所以我们就对每个1求覆盖它的所有极大圈,得到一个极大圈集合(注意unique一下)。注意每个极大圈的表达式长度一定,所以先对每个极大圈求最优表达式(sort每个与项,比较函数是str1+str2<str2+str1)。然后就是用这些极大圈求最优覆盖,这个好像没什么好方法,只能搜。对极大圈集合排序一下可以加快搜索速度。
Code
代码是在天王那个wa的代码基础上改的,所以挺难看的……
#include<iostream>
#include<cstdio>#include<cstring>
#include<vector>
#include<algorithm>
#include<string>
using namespace std;
typedef pair<string, int> node;
vector<node> ans;
bool vis[50];
int V[50];
bool cmp(string s1,string s2){
return s1+s2<s2+s1;
}
bool cmp2(string s1,string s2){
return s1+"+"+s2<s2+"+"+s1;
}
bool hmr(node a, node b) {
if (a.second==b.second) {
if (a.first.length()==b.first.length()) return a.first<b.first;
return a.first.length()<b.first.length();
}
return a.second<b.second;
}
bool operator==(node a, node b) {
return a.first==b.first && a.second==b.second;
}
string StInS(int s,int n,int ors){
int i;
vector<string> tmpAns;
for (i=0;i<(1<<n);i++){
if ((i&s)==(ors&s))
if (V[i]==0) return "";
}
if (s==0) return "1";
string tmp;
for (i=0;i<n;i++) if (s&(1<<i)){
tmp="";
if (!(ors&(1<<i)))
tmp+='-';
tmp+=(char)(i+'A');
tmpAns.push_back(tmp);
}
sort(tmpAns.begin(),tmpAns.end(),cmp);
tmp="";
for (i=0;i<tmpAns.size();i++)
tmp+=tmpAns[i];
return tmp;
}
void getans(int s, int n) {
int i,j;
int minsize = 0x3fff;
vector<node> tmp;
for (i=0;i<(1<<n);i++) {
int ctrl=__builtin_popcount(i);
if (ctrl>minsize) continue;
string tans2=StInS(i,n,s);
if (tans2.empty()) continue;
if (ctrl<minsize) {
minsize = ctrl;
tmp.clear();
}
int res = 0;
for (j = 0; j < 1<<n; ++j)
if ((j&i)==(s&i)) res |= 1<<j;
tmp.push_back(make_pair(tans2, res));
}
for (i = 0; i < tmp.size(); ++i)
ans.push_back(tmp[i]);
}
int N, M;
int all;
int best;
bool use[64], ause[64];
void dfs(int i, int len, int cover) {
if (len >= best) return;
if (cover==all) {
memcpy(ause, use, sizeof(use));
best = len;
return;
}
if (i==M) return;
use[i] = 1;
dfs(i+1, len+ans[i].first.length()+1, cover|ans[i].second);
use[i] = 0;
dfs(i+1, len, cover);
}
int main(){
int i,s,j,v;
int cas=0;
for (;;){
scanf("%d",&N);
if (N==0) break;
for (i=0;i<(1<<N);i++){
s=0;
vis[i] = 0;
for (j=0;j<N;j++){
scanf("%d",&v);
s^=(v<<j);
}
scanf("%d",&V[s]);
}
ans.clear();
memset(vis, 0, sizeof vis);
all = 0;
for (s = 0; s < 1<<N; ++s)
if (V[s]){
all |= 1<<s;
getans(s, N);
}
if (ans.size()==0) {
puts("-AA");
continue;
}
if (ans[0].first[0]=='1') {
puts("-A+A");
continue;
}
sort(ans.begin(), ans.end(), hmr);
M = unique(ans.begin(), ans.end())-ans.begin();
sort(ans.begin(), ans.begin()+M);
best = 0x3fffffff;
memset(use, 0, sizeof use);
memset(ause, 0, sizeof ause);
dfs(0, 0, 0);
vector<string> astr;
for (i = 0; i < M; ++i)
if (ause[i]) astr.push_back(ans[i].first);
sort(astr.begin(), astr.end(), cmp2);
string fin = astr[0];
for (i = 1; i < astr.size(); ++i)
fin += "+"+astr[i];
cout << fin << '\n';
}
return 0;
}