【阅读笔记】Inferring network connectivity from event timing patterns

Inferring network connectivity from event timing patterns

Jose C , Dimitra M , Marc T . Inferring Network Connectivity from Event Timing Patterns[J]. Physical Review Letters, 2018, 121(5):054101-.

这篇文章提出了一个从 spike neural network 的 spike 序列来 reconstruct 网络连接的方法。
考虑一个含有 N N N各节点的网络, i i i节点的第 m m m个 spike 发生在 t i , m t_{i,m} ti,m,定义 inter-spike interval (ISI)为
Δ T i , m = t i , m − t i , m − 1 \Delta T_{i,m}=t_{i,m}-t_{i,m-1} ΔTi,m=ti,mti,m1

定义 cross-spike intervals (CSIs)为
w j , k , m i = t j , p − t i , m − 1 w^i_{j,k,m}=t_{j,p}-t_{i,m-1} wj,k,mi=tj,pti,m1

表示在 i i i节点的第 m m m个 spike 间隔内 j j j节点发生的第 k k k次 sipke 距离间隔起始时间的间隔。现在假设给定的序列内 k k k的最大值为 K i K_i Ki,核心的想法是 ISI 和 CSI 满足
Δ T i , m = h i ( Λ i W m i ) \Delta T_{i,m}=h_i(\Lambda^iW^i_m) ΔTi,m=hi(ΛiWmi)

在这里插入图片描述
其中 Λ i \Lambda^i Λi类似于链接矩阵,不过有所不同,它是一个 N × N N\times N N×N的对角矩阵,若 j j j i i i有作用,对角元素 Λ j j i = 1 \Lambda^i_{jj}=1 Λjji=1,否则为0。 W m i = [ w j , k , m i ] W^i_m=[w^i_{j,k,m}] Wmi=[wj,k,mi]是个 N × K i N\times K_i N×Ki的矩阵,其中第 k k k列为
w k , m i = [ w 1 , k , m i , w 2 , k , m i , … , w N , k , m i ] T w^i_{k,m}=[w^i_{1,k,m},w^i_{2,k,m},…,w^i_{N,k,m}]^T wk,mi=[w1,k,mi,w2,k,mi,,wN,k,mi]T

定义空间向量 e i , m = [ v e c ( W m i ) , Δ T i , m ] T e_{i,m}=[vec(W^i_m),\Delta T_{i,m}]^T ei,m=[vec(Wmi),ΔTi,m]T,取空间向量取空间向量的中心点 e i , r e_{i,r} ei,r作为线性化的中心,近似可得
Δ T i , m = Δ T i , r + t r ( ( ∂ h i ∂ W i Λ i [ W m i − W m i ] ) \Delta T_{i,m}=\Delta T_{i,r}+tr((\frac{\partial h_i}{\partial W^i}\Lambda^i[W^i_m-W^i_m]) ΔTi,m=ΔTi,r+tr((WihiΛi[WmiWmi])

在这里插入图片描述
也就是说
Δ T i , m = Δ T i , r + ∑ k = 1 K i ∇ h i , k Λ i ( w k , m i − w k , r i ) \Delta T_{i,m}=\Delta T_{i,r}+\sum_{k=1}^{K_i}\nabla h_{i,k}\Lambda^i(w^i_{k,m}-w^i_{k,r}) ΔTi,m=ΔTi,r+k=1Kihi,kΛi(wk,miwk,ri)

其中 ∇ h i , k = [ ∂ h i ∂ W 1 k i , ∂ h i ∂ W 2 k i , … , ∂ h i ∂ W N k i ] \nabla h_{i,k}=[\frac{\partial h_i}{\partial W_{1k}^i},\frac{\partial h_i}{\partial W_{2k}^i},…,\frac{\partial h_i}{\partial W_{Nk}^i}] hi,k=[W1kihi,W2kihi,,WNkihi],用线性回归求解系数 ∇ h i , k \nabla h_{i,k} hi,k。将 ∂ h i ∂ W j 1 i \frac{\partial h_i}{\partial W_{j1}^i} Wj1ihi的大小作为判断连接的依据。
下面是一些仿真结果
由于是线性化,所以选取空间向量中心附近的点做回归效果较好,无论是 spike 序列较为规律还是不规则的,而随机选择效果在不规则的 spike 上较差。
在这里插入图片描述

在这里插入图片描述
ESL 表示本文的重构方法,M表示数据量,图 a 展示用不同方法重构一个100个节点的 LIF neurons 神经网络的效果,图 b 展示用不同方法重构一个100个节点的 HH neurons 神经网络的效果,图 c 展示重构一个100个节点的 LIF neurons 神经网络但是只有 80 个节点可以观测的效果,图 b 展示在可观测节点不同比例下的重构效果。

不但可以重构出是否有链接,还可以确定是兴奋性连接还是抑制性连接
在这里插入图片描述

读后感:
把线性化用在了 snn 网络的重构,让我深刻地感到方向比努力更重要。
感觉 w j , k , m i w^i_{j,k,m} wj,k,mi如果算跟后一个 spike 的时间间隔,效果会更好,然后考虑最后一个 spike 对系统的影响。(原文中是算跟前一个的时间间隔,算时间间隔内第一个 spike 的影响,感觉如果倒着数并且对齐,可能会更好)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值