模型评估与模型参数选择and监督学习 学习小结

一.模型评估与模型参数选择

1.模型评估的定义

(1)基本概念:模型评估是验证模型性能的关键步骤,它不仅涉及对模型在训练集上的表现进行考察,还包括其在测试集上的表现评估。这一过程确保了模型的泛化能力,即模型在未见过的数据上也能表现良好
(2)常见指标:准确率、精确率、召回率、F1分数、ROC曲线与AUC值等都是常用的模型评估指标。这些指标帮助量化模型的效果,适用于不同类型的机器学习问题,如二分类、多分类和回归等
(3) 评估方法:留出法、交叉验证法和自助法是常见的模型评估方法。留出法将数据集分为训练集和测试集,交叉验证法则通过多次分割数据集来减少评估误差,而自助法通过重采样技术估计模型的性能
(4)实践应用:在实际应用中,模型评估应结合具体任务和数据集特点选择合适的评估指标和方法。例如,在医疗诊断领域,由于误诊和漏诊的代价较高,通常会优先考虑精确率和召回率;而在金融预测领域,由于数据量庞大且复杂,可能会采用ROC曲线和AUC值来评估模型性能

 

2.模型参数选择的定义

(1) 基本概念:模型参数是控制模型行为的变量,包括超参数、权重参数和偏置参数[^1^]。这些参数决定了模型的结构和预测能力
(2)参数类型:超参数是在模型训练前设定的,用于控制模型训练过程的参数,如学习率、批量大小等 权重参数和偏置参数则是在模型训练过程中通过数据学习得到的,它们直接影响模型的预测结果
(3)选择方法:选择合适的模型参数通常基于模型在验证集上的表现,通过调整参数以优化某些性能指标(如准确率、召回率等)常用的技术包括网格搜索、随机搜索和贝叶斯优化等
(4)优化正则化:为了避免过拟合,通常会采用正则化技术,如L1和L2正则化,以及dropout等方法。同时,早停法也是防止模型过拟合的有效策略之一。
(5)实践应用:在实际应用中,模型参数的选择是一个迭代过程,需要不断地调整和验证,以确保模型具有良好的泛化能力。这一过程对于提高模型的准确性和鲁棒性至关重要。

总的来说,模型参数选择是确保机器学习模型有效性的关键步骤。正确的参数选择可以显著提升模型的性能,使其更好地适应新的、未见过的数据

3.模型评估与模型参数选择

若对于给定的 输入 𝑥 ,若某个模型的输出 𝑦 = 𝑓 𝑥 偏离 真实目标值 𝑦 ,那么就 说明模型存在误差
𝑦 偏离 𝑦 的程度可以用关于 𝑦和 𝑦 某个函 数 𝐿 𝑦, 𝑦 来表示,作为误差的度量标 准:这样的函数 𝐿𝑦, 𝑦 称为损失函数
在某种损失函数度量下,训练集上的平 均误差被称为训练误差,测试集上的误 差称为泛化误差。
由于我们训练得到一个模型最终的目的 是为了在未知的数据上得到尽可能准确的结果 ,因此泛化误差是衡量一个模型泛化能力的重要标准
PS:
误差 :预测输出 𝑦与真实输出 𝑦 之间的差异;
经验误差、训练误差 :在 训练集 上的误差;
泛化误差 :在新样本上的误差
泛化误差越小越好,经验误差不一定越小越好,可能导致 过拟合
过拟合:将训练样本自身的一些特点当作所 有样本潜在的泛化特点  表现:在训练集上表现很好,在测试集上表 现不好。
  过拟合的原因: 训练数据太少(比如只有几百组) 模型的复杂度太高(比如隐藏层层数设置的过多,神经元的数量设置的过大) 数据不纯
4.训练集,验证集与测试集

(1)训练集:在机器学习和深度学习模型开发中扮演着核心角色,它的主要作用是提供足够的数据样本来训练模型,使模型能够学习到数据的特征和模式,从而进行准确的预测或分类

(2)验证集:在机器学习和深度学习中扮演着至关重要的角色,主要用于调整模型的超参数以及评估模型的泛化能力

验证集不像训练集和测试集,它是非必需的。如果不需要调整超参数,就可以不使用验证集,
直接用测试集来评估效果。
验证集评估出来的效果并非模型的最终效果,主要是用来调整超参数的,模型最终效果以测
试集的评估结果为准

(3)测试集:主要作用是评估模型的泛化能力,即模型在未见过的数据上的表现能力

(4)划分数据集

对于小规模样本集(几万量级),常用的划分比例: 训练集:验证集:测试集=6:2:2
训练集:测试集==8:2、7:3
对于大规模样本集(百万级以上),只要验证集和测试集的数量足够即可   例如有 100w 条数据,那么留 1w 验证集,1w 测试集即可  1000w 的数据,同样留 1w 验证集和 1w 测试集   超参数越少,或者超参数很容易调整,那么可以减少验证集的比例,更多的分配给训练集
二.监督学习
(1)监督学习:监督学习是一种机器学习方法,其中模型从标记的训练数据中学习,目标是找到输入特征与输出标签之间的映射关系  。这种方法需要预先标注好的数据集,即每个训练样本都包含一个明确的标签或答案。在监督学习中,数据需要被清晰地标记为不同的类别或数值,这通常涉及人工标注过程,可能既耗时又昂贵
 
(2)非监督学习:非监督学习处理的是未标记的数据,目的是发现数据中的隐藏模式和结构  。它不需要外部标签,而是让算法自行识别数据中的规律。非监督学习使用完全未标记的数据,这使得它在处理大规模数据集时更加灵活和经济
(3)模型训练
监督学习:模型通过最小化预测输出与实际标签之间的误差来优化。常见的技术包括回归分析和分类任务
非监督学习:模型试图最大化数据内部的相似性或差异性,如聚类分析,其中相似的实例被分组在一起
(4)应用场景
监督学习:适用于各种场景,尤其是当存在足够的标记数据时,例如垃圾邮件检测、语音识别和图像分类等 
非监督学习:常用于市场细分、社交网络分析、客户细分等,这些场景中数据的天然结构比具体的标签更重要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值