使用机器学习预测股票市场(机器学习案列)

本文介绍了如何使用Python进行股票市场预测,通过延长分析周期和运用支持向量回归(SVM)模型以及动态时间扭曲(DTW)算法,评估交易策略的性能。通过分析标准普尔500指数数据,发现隔夜交易具有较低波动性,并构建模型预测收盘价,结果显示新模型在预测上的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Python Machine Learning Blueprints》 Alexander T.Combs 著
《Python机器学习实践指南》黄申 译
读书笔记2

本文不构成任何投资建议,仅供学习。
文章所用数据集来自yahoo网站SPY ETF的标普500股票交易数据,需要安装datareader包从网站拉取数据,可以使用pip命令安装:pip install pandas_datareader。下文每个代码块对应一个输出,有的贴出了输出结果,有的未贴出。

如何开发一个交易策略

首先导入包,拉取SPY ETF从2010年初到2016年3月初的数据。

import pandas as pd
import numpy as np
from pandas_datareader import data, wb
import matplotlib.pyplot as plt
# 设置格式
%matplotlib inline
pd.set_option('display.max_colwidth', 200)
# 拉取数据
import pandas_datareader as pdr
start_date = pd.to_datetime('2010-01-01')
stop_date = pd.to_datetime('2016-03-01')
spy = pdr.data.get_data_yahoo('SPY', start_date, stop_date)
spy     # 显示数据

在这里插入图片描述
绘制数据(数据可视化),只选择收盘价

spy_c = spy['Close']   # 选择收盘价绘制数据

fig, ax = plt.subplots(figsize=(15, 10))
spy_c.plot(color='k')
plt.title('SPY', fontsize=20)  

在这里插入图片描述
从图中我们看到选定时期内,标准普尔500指数日收盘价的价格图。接下来进一步分析,如果投资这个ETF,该期间内的回报时多少。
先拉取首个开盘日的数据。

first_open = spy['Open'].iloc[0]
first_open

在这里插入图片描述
接下来,让我们得到该期间最后一天的收盘价

last_close = spy['Close'].iloc[-1]
last_close

在这里插入图片描述

last_close - first_open   # 看看整个时期的变化,可知收益超过76%
spy['Daily Change'] = pd.Series(spy['Close'] - spy['Open'])
spy['Daily Change']   # 每天从开盘到收盘的变化

在这里插入图片描述

# 将这段时期的变化加和
spy['Daily Change'].sum()    

从上面代码的结果看来,我们的收益已经从超过85点的增长,下降到刚刚过41的增长,也就是说,我们一般以上的市场收益来自这段时间内整日整夜地持有股票!隔夜交易的回报率优于盘中交易的回报率,那么它的波动性如何呢?我们可以使用numpy来计算盘中交易的标准差

np.std(spy['Daily Change'])  
spy['Overnight Change'] = pd.Series(spy['Open'] - spy['Close'].shift(1))
np.std(spy['Overnight Change'])    # 计算隔夜交易的标准差

上面两个代码块分别输出盘中交易的标准差以及隔夜交易的标准差,分别约为1.14和0.95,因此隔夜交易相比于盘中交易具有较低的波动性。
下面比较下跌交易日的平均变化。

# 计算下跌交易日的每日变化
spy[spy['Daily Change']<0]['Daily Change'].mean()   
 # 计算下跌交易日的隔夜变化
spy[spy['Overnight Change']<0]['Overnight Change'].mean() 

输出结果分别约为-0.90,-0.66,可以看出隔夜交易日策略的平均下降幅度小于盘中交易策略。

到目前为止,我们观测的都是数据点,现在看看回报。浙江有助于在更现实的背景下讨论我们的收益和损失。继续前面的两个策略,我们将为每个场景构建一个pandas数据序列:每日回报(昨日收盘到今日收盘的价格变化)、盘中回报(当日开盘到收盘的价格变化)和隔夜回报(昨日收盘到今日开盘的价格变化),具体如下。

daily_rtn = ((spy['Close'] - spy['Close'].shift(1))/spy['Close'].shift(1)*100)
id_rtn = ((spy['Close'] - spy['Open'])/spy['Open'])*100
on_rtn = ((spy['Open'] - spy['Close'].shift(
React Hooks 是 React 16.8 中新增的特性,它可以让你在函数组件中使用 state、生命周期钩子等 React 特性。使用 Hooks 可以让你写出更简洁、可复用且易于测试的代码。 React Hooks 提供了一系列的 Hook 函数,包括 useState、useEffect、useContext、useReducer、useCallback、useMemo、useRef、useImperativeHandle、useLayoutEffect 和 useDebugValue。每个 Hook 都有特定的用途,可以帮助你处理不同的问题。 下面是 React Hooks 的一些常用 Hook 函数: 1. useState useState 是最常用的 Hook 之一,它可以让你在函数组件中使用 state。useState 接受一个初始状态值,并返回一个数组,数组的第一个值是当前 state 值,第二个值是更新 state 值的函数。 ``` const [count, setCount] = useState(0); ``` 2. useEffect useEffect 可以让你在组件渲染后执行一些副作用操作,比如订阅事件、异步请求数据等。useEffect 接受两个参数,第一个参数是一个回调函数,第二个参数是一个数组,用于控制 useEffect 的执行时机。 ``` useEffect(() => { // 这里可以执行副作用操作 }, [dependencies]); ``` 3. useContext useContext 可以让你在组件树中获取 context 的值。它接受一个 context 对象,并返回该 context 的当前值。 ``` const value = useContext(MyContext); ``` 4. useRef useRef 可以让你在组件之间共享一个可变的引用。它返回一个对象,该对象的 current 属性可以存储任何值,并在组件的生命周期中保持不变。 ``` const ref = useRef(initialValue); ref.current = value; ``` 5. useCallback useCallback 可以让你缓存一个函数,以避免在每次渲染时都创建一个新的函数实例。它接受一个回调函数和一个依赖数组,并返回一个 memoized 的回调函数。 ``` const memoizedCallback = useCallback(() => { // 这里是回调函数的逻辑 }, [dependencies]); ``` 6. useMemo useMemo 可以让你缓存一个计算结果,以避免在每次渲染时都重新计算。它接受一个计算函数和一个依赖数组,并返回一个 memoized 的计算结果。 ``` const memoizedValue = useMemo(() => computeExpensiveValue(a, b), [a, b]); ``` 以上就是 React Hooks 的一些常用 Hook 函数,它们可以帮助你更好地处理组件状态、副作用、上下文和性能优化等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值