《Python Machine Learning Blueprints》 Alexander T.Combs 著
《Python机器学习实践指南》黄申 译
读书笔记2
本文不构成任何投资建议,仅供学习。
文章所用数据集来自yahoo网站SPY ETF的标普500股票交易数据,需要安装datareader包从网站拉取数据,可以使用pip命令安装:pip install pandas_datareader。下文每个代码块对应一个输出,有的贴出了输出结果,有的未贴出。
如何开发一个交易策略
首先导入包,拉取SPY ETF从2010年初到2016年3月初的数据。
import pandas as pd
import numpy as np
from pandas_datareader import data, wb
import matplotlib.pyplot as plt
# 设置格式
%matplotlib inline
pd.set_option('display.max_colwidth', 200)
# 拉取数据
import pandas_datareader as pdr
start_date = pd.to_datetime('2010-01-01')
stop_date = pd.to_datetime('2016-03-01')
spy = pdr.data.get_data_yahoo('SPY', start_date, stop_date)
spy # 显示数据
绘制数据(数据可视化),只选择收盘价
spy_c = spy['Close'] # 选择收盘价绘制数据
fig, ax = plt.subplots(figsize=(15, 10))
spy_c.plot(color='k')
plt.title('SPY', fontsize=20)
从图中我们看到选定时期内,标准普尔500指数日收盘价的价格图。接下来进一步分析,如果投资这个ETF,该期间内的回报时多少。
先拉取首个开盘日的数据。
first_open = spy['Open'].iloc[0]
first_open
接下来,让我们得到该期间最后一天的收盘价
last_close = spy['Close'].iloc[-1]
last_close
last_close - first_open # 看看整个时期的变化,可知收益超过76%
spy['Daily Change'] = pd.Series(spy['Close'] - spy['Open'])
spy['Daily Change'] # 每天从开盘到收盘的变化
# 将这段时期的变化加和
spy['Daily Change'].sum()
从上面代码的结果看来,我们的收益已经从超过85点的增长,下降到刚刚过41的增长,也就是说,我们一般以上的市场收益来自这段时间内整日整夜地持有股票!隔夜交易的回报率优于盘中交易的回报率,那么它的波动性如何呢?我们可以使用numpy来计算盘中交易的标准差
np.std(spy['Daily Change'])
spy['Overnight Change'] = pd.Series(spy['Open'] - spy['Close'].shift(1))
np.std(spy['Overnight Change']) # 计算隔夜交易的标准差
上面两个代码块分别输出盘中交易的标准差以及隔夜交易的标准差,分别约为1.14和0.95,因此隔夜交易相比于盘中交易具有较低的波动性。
下面比较下跌交易日的平均变化。
# 计算下跌交易日的每日变化
spy[spy['Daily Change']<0]['Daily Change'].mean()
# 计算下跌交易日的隔夜变化
spy[spy['Overnight Change']<0]['Overnight Change'].mean()
输出结果分别约为-0.90,-0.66,可以看出隔夜交易日策略的平均下降幅度小于盘中交易策略。
到目前为止,我们观测的都是数据点,现在看看回报。浙江有助于在更现实的背景下讨论我们的收益和损失。继续前面的两个策略,我们将为每个场景构建一个pandas数据序列:每日回报(昨日收盘到今日收盘的价格变化)、盘中回报(当日开盘到收盘的价格变化)和隔夜回报(昨日收盘到今日开盘的价格变化),具体如下。
daily_rtn = ((spy['Close'] - spy['Close'].shift(1))/spy['Close'].shift(1)*100)
id_rtn = ((spy['Close'] - spy['Open'])/spy['Open'])*100
on_rtn = ((spy['Open'] - spy['Close'].shift(