Robust Optimization VS Stochastic Optimization

本文探讨了鲁棒优化和随机规划两种处理不确定性的优化方法。鲁棒优化针对不确定参数不使用概率分布描述的情况,寻求在不确定性集合内所有可能实现下都可行且最优化的解决方案。对比之下,随机规划通过定义可能发生的情景及其概率来解决不确定性问题,并分为两阶段问题,第一阶段决策不依赖于随机变量的实际值,而第二阶段决策则基于已知的不确定性参数。文章还讨论了这两种方法的优点与局限。
摘要由CSDN通过智能技术生成

1. Robust optimization addresses optimization problems with uncertain parameters that are not described using probability distributions but uncertainty sets.


2. A robust optimization problem seeks to determine a solution to an optimization problem that is feasible for any realization of the uncertain parameters within the uncertainty set, and optimal for the worst-case realization of these uncertain parameters.


a stochastic programming problem 的缺点:

(1) the number of scenarios太多,导致问题规模增大

(2) distribution functions很难描绘不确定变量的特性


Robust Optimization优点:

computationally efficient and modelling flexibility

代价:At the cost of reduced flexibility


可以用对偶变换来变成 single-level的问题来求解,但一个重要前提是最里层的优化问题是convex的


对比:

Stochastic:

Random vector λ is then modeled as a set Ω of plausible outcomes or scenarios
ω, where each ω ∈ Ω has an associated probability of occurrence πω such that
ω∈Ω πω = 1.



Stochastic Programming Problems with Recourse

The simplest recourse problem is the two-stage stochastic programming problem,
in which decisions are divided into two groups, namely:
• Decisions that have to be made before the realization of uncertain parameters:

first-stage or here-and-now decisions and do not depend on the realization of the random parameters. 联系动态经济调度中,t=1时的优化叫first-stage,变量叫 here-and-now decision variables。

• Decisions that are made after the actual values of uncertain parameters are
disclosed.  

“second-stage, wait-and-see, or recourse decisions”



written by Aharon Ben-Tal Laurent El Ghaoui Arkadi Nemirovski Copyright © 2009 by Princeton University Press PART I. ROBUST LINEAR OPTIMIZATION 1 Chapter 1. Uncertain Linear Optimization Problems and their Robust Counterparts 3 1.1 Data Uncertainty in Linear Optimization 3 1.2 Uncertain Linear Problems and their Robust Counterparts 7 1.3 Tractability of Robust Counterparts 16 1.4 Non-Affine Perturbations 23 1.5 Exercises 25 1.6 Notes and Remarks 25 Chapter 2. Robust Counterpart Approximations of Scalar Chance Constraints 27 2.1 How to Specify an Uncertainty Set 27 2.2 Chance Constraints and their Safe Tractable Approximations 28 2.3 Safe Tractable Approximations of Scalar Chance Constraints: Basic Examples 31 2.4 Extensions 44 2.5 Exercises 60 2.6 Notes and Remarks 64 Chapter 3. Globalized Robust Counterparts of Uncertain LO Problems 67 3.1 Globalized Robust Counterpart — Motivation and Definition 67 3.2 Computational Tractability of GRC 69 3.3 Example: Synthesis of Antenna Arrays 70 3.4 Exercises 79 3.5 Notes and Remarks 79 Chapter 4. More on Safe Tractable Approximations of Scalar Chance Constraints 81 4.1 Robust Counterpart Representation of a Safe Convex Approximation to a Scalar Chance Constraint 81 4.2 Bernstein Approximation of a Chance Constraint 83 4.3 From Bernstein Approximation to Conditional Value at Risk and Back 90 4.4 Majorization 105 4.5 Beyond the Case of Independent Linear Perturbations 109 4.6 Exercises 136 4.7 Notes and Remarks 145 PART II. ROBUST CONIC OPTIMIZATION 147 Chapter 5. Uncertain Conic Optimization: The Concepts 149 5.1 Uncertain Conic Optimization: Preliminaries 149 5.2 Robust Counterpart of Uncertain Conic Problem: Tractability 151 5.3 Safe Tractable Approximations of RCs of Uncertain Conic Inequalities 153 5.4 Exercises 156 5.5 Notes and Remarks 157 Chapter 6. Uncertain Conic Quadratic Problems with Tractable RCs 159 6.1 A Generic Solvable Case: Scenario Uncertainty 159 6.2 Solvable Case I: Simple Interval Uncertainty 160 6.3 Solv
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值