- 博客(19)
- 资源 (1)
- 收藏
- 关注
原创 mmdetection运行研究记录
有时候会运行别的基于mmdetection框架的代码,有些并不需要install这些代码,而是依旧使用之前install mmdetection即可。然而需要注意是PYTHONPATH需要设定。可以看出来加了PTHONPATH后,再去定位mmdet等库就是在修改的代码里。...
2021-10-22 16:52:50 244
原创 A Practical Guide to Robust Optimization 鲁棒优化实用指南
Abstract本文主要目的是介绍鲁棒优化思想以及在实际中的应用场景,并且举出一些例子,帮助实际工作者的理解。1. Introduction实际优化任务中会包含很多随机数据。这些数据或者本神就是随机的或者由于一些误差。对于这些误差目前有两种手段来处理:随机优化和鲁棒优化。随机优化有一个很重要的假设:随机数据的分布是已知的或者是估计的。如果这个条件满足那么随机优化问题就是可行的。鲁棒优化,并不需要随机数据的概率分布是已知的,但是它又假设随机数据是在所谓的“不确定集合”(uncertainty set)
2021-01-23 17:30:07 3812
原创 [论文解读] 多机器人系统动态任务分配综述
https://www.emerald.com/insight/content/doi/10.1108/IR-04-2020-0073/full/html多机器人/多智能体 动态环境 任务分配 决策 动态任务调度策略该文章主要是想对目前state of the art多机器人动态任务调度策略做一个全面的评价,注意定语挺多的,里面的方法也较多为近几年的智能调度那些算法。衡量方法主要考虑到了应用场景、限制、目标方程以及对不确定性处理方式。Introduction多机器人协作系统是最近的研究热点。多机器人
2020-10-08 12:19:24 8360
原创 [论文解读] DXSLAM: A Robust and Efficient Visual SLAM System with Deep Features
论文地址:https://arxiv.org/pdf/2008.05416.pdf论文代码:https://github.com/ivipsourcecode/dxslam这又是一篇深度学习特征点SLAM系统,考虑到本人就写过这样的论文,所以工作上是大致一样的……但是这篇论文开源了!尽管只有SLAM系统是开源的但是这才是我比较看重的,Superpoint+VLAD+encoder-decoder结构,这些部分都有开源的。其实这东西主要调参比较麻烦,从orb改到深度特征点代码上挺简单的,但是很多情况下精
2020-10-06 19:16:27 2047 3
原创 Neural Network Learning Mechanisms 神经网络学习机制
学习机制:Error Correction LearningMemory Based LearningHebbian LearningCompetitive LearningBoltzmann LearningError Correction Learning误差修正学习(Error-Correction Learning)是一种有导师的学习过程,其基本思想是利用神经网络的期望输出与实际之间的偏差作为连接权值调整的参考,并最终减少这种偏差。最常用的损失函数是均方误差(Mean Squar
2020-10-05 15:29:10 902
原创 pytorch 多GPU 问题记录
使用NAS,网络太大,一块放不下,所以尝试用ddp玩一个多gpu训练。(py36torch15) xx@cluster:~/wang/FasterCrowdCountingNAS/FBNetBranch$ python main.py /home//anaconda3/envs/py36torch15/lib/python3.6/site-packages/pytorch_lightning/utilities/distributed.py:23: UserWarning: You requested
2020-06-09 11:33:45 6393 6
原创 Crowd Counting 网络结构
Single-image crowd counting via multi-column convolutional neural networkIC-CNNIC-CNNSANETScale Aggregation Network for Accurate and Efficient Crowd CountingCL-CNN
2020-06-07 19:20:08 355
原创 MVSNet系列
FastMVSNet–CVPR2020添加链接描述添加链接描述速度真快,但是有的场景点太稀疏了吧,应该是最快的方法。CVP-MVSNet–CVPR2020(Oral)很慢的方法,精度很高R-MVSNet --CVPR2019DeepMVS
2020-05-26 10:02:31 11348 3
原创 Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
添加链接描述
2020-05-16 16:09:08 484
原创 SLAM随笔
一些问题的记录orb的关键帧和map point的新增条件都很宽松,与之配套的是一个比较严格的后期的筛选策略,相对而言vins没有后期筛选过程,势必要将新增条件变严格,对比而言,我觉得orb的策略更加合理,因为决策应该尽可能放到较高层级去做(因为可以拿到更多信息)orb的前端由于维护了很多历史信息可以增加很多策略如TrackLocalMap等,使得前端的输出质量更高(当然增加了计算复杂度),但是orb通过降低localmapping和loopclosing 的频率来降低对于系统资源的需求,相对而言vin
2020-05-15 11:45:46 189
原创 高精度组合导航系统 推荐方案
高精度组合导航系统 推荐方案产品概述产品特点产品配置清单核心技术多传感器数据融合导航算法产品概述该导航系统采用多传感器数据融合技术将卫星定位、惯性测量、图像数据相结合,是一款能够提供多种导航参数的组合导航产品。该产品在没有卫星信号或者卫星信号受城市峡谷、建筑山林等遮挡、以及多路径干扰的情况,使用内置 MEMS 陀螺仪与加速度计,以及图像采集信息,借助新一代多传感器数据融合技术,实现可靠、精确和实时的高精度的载体定位信息。产品特点准确的姿态和厘米级位置信息无需卫星定位信息对载具位置进行精确定位
2020-05-11 20:04:21 3631
原创 高精度 双目视觉方案
国内外双目摄像头设备以及方案的记录厂商方案小觅智能标准彩色版(S2110-95/Color)中科慧眼SmarterEye-C2ProSmarterEye-B1人加智能司眸®PSP010-400人加智能领晰(LeadSense)双目相机小觅智能标准彩色版(S2110-95/Color)帧率: 1280x400@10/20/30/60fps 2560x800@10/20/30fps分辨率: 1280x400; 2560x800基线:深度距离: 0.60-7m视角:
2020-05-09 21:20:26 2682 4
原创 realitycapture 3D建模软件
发现个很好用的三维重建软件,个人尝试了几种不同常见,对于物品的重建精度真不错,但是不能用于室内重建,基本上室内多半得gg。realitycapture是最先进的摄影测量软件解决方案。它比市场上任何同类产品都快。不过我发现这东西没法用GPU,但是即便是CPU速度也比colmap这种GPU的快非常多,当然速度精度同pixl4d这种比貌似一般般,但是p4d这类主要做无人机的连续图片建模,而这个没有这类...
2020-05-06 09:41:35 13059 6
原创 [论文解读]Graph-Based Parallel Large Scale Structure from Motion
基于图的并行大尺度场景重建为啥有了这篇论文解读吧……是我随便浏览看到的,扫了两眼发现这论文方法我以前做比赛用过(比赛具体内容在这),然后就继续看了下去发现比我以前做的方法好多了,虽然本质是一个思路。我们在做三维重建时候,特别是图片特别多,场景特别大的时候,其实现有很多SFM程序都会出现特别差的结果(OpenMVG、Colmap)。这类方法是增量式重建的(OpenMVG也有全局的),程序慢慢加图...
2020-04-27 16:38:28 922 5
原创 LIBRE: The Multiple 3D LiDAR Dataset 激光雷达测评
激光雷达的测评Abstract正文实验设计结果总结Abstract首个具有12种不同的LiDAR传感器的数据集,涵盖了一系列激光雷达制造商、种类和配置。在四种不同的环境和配置上用各个传感器独立采集数据:放置在已知距离上的静态障碍物,在固定位置测量环境;在移动车辆上测量静态障碍物;在不同大气条件下测量的结果(雾,雨,强光);在一个固定位置多个传感器并排测量动态物体,创造间接干扰条件;在一天中的不...
2020-04-25 14:55:55 1067
原创 [论文解读]SuperGlue: Learning Feature Matching with Graph Neural Networks
SuperGlue: Learning Feature Matching with Graph Neural Networks个人感受:这个是继SuperPoint 后该组又一次推进,感觉效果更加强了,如果superpoint只是在尝试学习传统方法的流程,LFNet end-to-end training就在benchmark上超越了SIFT,近来CVPR19的D2Net 就直接跳出了传统方法...
2020-04-24 20:26:21 5763 4
原创 [论文解读]ASLFeat: Learning Local Features of Accurate Shape and Localization
先总结一下:这个文章是对D2Net的更进一步,主要解决了D2Net的痛点——keypoint太不准了。我实际用D2Net进行三维重建就感受到,D2Net并不是高精度的像素级匹配,而更像是图像检索的DELF。它在4pixel threshold 的精度以下完全没法跟传统的SIFT之类比,只有当阈值放大才能有特别出众的效果。这个文章解决了这个痛点,而且benchmark看起来效果也是特别好。贡...
2020-04-24 20:19:37 4223 9
原创 [论文解读]R2D2: Reliable and Repeatable Detector and Descriptor
NeurIPS 2019代码地址会议视频abstract仅仅学习可重复并显著的特征点不够,显著的区域并不一定是有区分性的,因此这样可能损害描述子性能。因此,文中认为描述子应仅在具有高置信度的区域学习。文中方法在Hpatch和 Aachen Day-Night localization benchmark有较好的表现。上图用棋盘图像显示了这样一个例子:每个角或色块都是可重复的,但由于单元...
2020-04-24 20:17:48 4430 6
原创 [论文解读]D2-Net: A Trainable CNN for Joint Description and Detection of Local Features
文章链接:https://www.jianshu.com/p/b33c7c9ea2e7以前好久的论文,这几天整理资料也翻出来了。应该是CVPR19的论文,讲的是同时做出来det和des。特征点定位精度不高,速度也很慢,不过对光照等鲁棒性非常高,如下图所示。但是这个方法的弱点非常明显,定位精度不高,如下图红色圈出的地方,其实非常低的精度了。实际上用这个进行重建的实验结果表示还不如SIFT好...
2020-04-24 20:15:21 4628 4
realitycapture.rar
2020-05-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人