基于https://blog.csdn.net/gao_zhennan/article/details/120717424
对IEEE754标准十六进制数进行转换,得到对应十进制数值
实例一
现在我们有一个十六进制数:41 F8 65 8A
对应32位二进制数为:0100 0001 1111 1000 0110 0101 1000 1010
按照IEEE754编码进行解码:0 - 1000 0011 - 1111 0000 1100 1011 0001 010
符号位是:0
所以这是个正数.
偏移后的指数位是: 1000 0011
, 转换为十进制为131, 减去偏移量127, 得到真正的指数是 4
尾数位是:1111 0000 1100 1011 0001 010
再加上隐藏的整数部分1. 得到完整的尾数(含隐藏的整数部分)为: 1.1111 0000 1100 1011 0001 010
最后得到的浮点数 = 尾数(含隐藏的整数部分) * 以2为底的指数次幂
= 二进制的: 1.1111 0000 1100 1011 0001 010
* 2^4
= 把小数点向右移动4位
= 二进制的1 1111.0000 1100 1011 0001 010
=十进制的31.049579620361328125
也就是说IEEE754编码的单精度浮点数”41 F8 65 8A
“对应十进制数是31.049579620361328125
实例二
现在我们有一个十六进制数:BF 1C E4 AC
对应32位二进制数为:1011 1111 0001 1100 1110 0100 1010 1100
按照IEEE754编码进行解码:1 - 0111 1110 - 0011 1001 1100 1001 0101 100
符号位是:1
所以这是个正数.
偏移后的指数位是: 0111 1110
, 转换为十进制为126, 减去偏移量127, 得到真正的指数是 -1
尾数位是:0011 1001 1100 1001 0101 100
再加上隐藏的整数部分1. 得到完整的尾数(含隐藏的整数部分)为: 1.0011 1001 1100 1001 0101 100
最后得到的浮点数 = - 尾数(含隐藏的整数部分) * 以2为底的指数次幂
= 二进制的: -1.0011 1001 1100 1001 0101 100
* 2^(-1)
= 把小数点向左移动1位
= 二进制的-0.1 0011 1001 1100 1001 0101 100
=十进制的-0.61286425590515136719
也就是说IEEE754编码的单精度浮点数”BF 1C E4 AC
“对应十进制数是-0.61286425590515136719