IEEE754编解码实例

基于https://blog.csdn.net/gao_zhennan/article/details/120717424
对IEEE754标准十六进制数进行转换,得到对应十进制数值

实例一

现在我们有一个十六进制数:41 F8 65 8A
对应32位二进制数为:0100 0001 1111 1000 0110 0101 1000 1010
按照IEEE754编码进行解码:0 - 1000 0011 - 1111 0000 1100 1011 0001 010
符号位是:0 所以这是个正数.
偏移后的指数位是: 1000 0011, 转换为十进制为131, 减去偏移量127, 得到真正的指数是 4
尾数位是:1111 0000 1100 1011 0001 010再加上隐藏的整数部分1. 得到完整的尾数(含隐藏的整数部分)为: 1.1111 0000 1100 1011 0001 010
最后得到的浮点数 = 尾数(含隐藏的整数部分) * 以2为底的指数次幂
= 二进制的: 1.1111 0000 1100 1011 0001 010 * 2^4
= 把小数点向右移动4位
= 二进制的1 1111.0000 1100 1011 0001 010
=十进制的31.049579620361328125
也就是说IEEE754编码的单精度浮点数”41 F8 65 8A“对应十进制数是31.049579620361328125

实例二

现在我们有一个十六进制数:BF 1C E4 AC
对应32位二进制数为:1011 1111 0001 1100 1110 0100 1010 1100
按照IEEE754编码进行解码:1 - 0111 1110 - 0011 1001 1100 1001 0101 100
符号位是:1 所以这是个正数.
偏移后的指数位是: 0111 1110, 转换为十进制为126, 减去偏移量127, 得到真正的指数是 -1
尾数位是:0011 1001 1100 1001 0101 100再加上隐藏的整数部分1. 得到完整的尾数(含隐藏的整数部分)为: 1.0011 1001 1100 1001 0101 100
最后得到的浮点数 = - 尾数(含隐藏的整数部分) * 以2为底的指数次幂
= 二进制的: -1.0011 1001 1100 1001 0101 100 * 2^(-1)
= 把小数点向左移动1位
= 二进制的-0.1 0011 1001 1100 1001 0101 100
=十进制的-0.61286425590515136719
也就是说IEEE754编码的单精度浮点数”BF 1C E4 AC“对应十进制数是-0.61286425590515136719

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值