本章将介绍浮点数在内存中的存储,虽然这些面试基本用不上,但是可以方便我们c语言的学习
For example:
十进制的5.0写成二进制就是101.0,相当于1.01*2^2,那么按照上面的格式可以得出S=0,M=1.01,E=2
浮点数存的过程
IEEE754对有效数字M和指数E,还有一些特别规定。
下面的形式:
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂
首先E为一个无符号整数,但是指数是可以为负数的
这意味着,如果E为8位,它的取置范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
我们接下来再看看浮点数取的过程在,这个地方我们要分为三种情况
(1)
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效
数字M前加上第一位的1。
(2)E全为0
这时,浮点数的指数E等于1-127(或者1-1023) 即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示土0,以及接近于0的很小的数字。
(3)E全为1
这是如果有效数字M全为0,表示+-无穷大(正负取决于符号位s8);
这也就是为啥我们浮点数有时是不精确的,甚至是不连续的
原因是十进制有限位的数换成二进制可能是无限位的
不信你可以将8.8写成二进制数试试,你会发现写不完的
因此浮点数用==符号判断有时是不准确的,这个时候可以比较两个数的差值,如果误差小于一个可接受的值,就可以看作这两个数是相同的。
我们直接上一道题试试
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int main(void)
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值:%d\n", n);
printf("*pfloat的值:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
根据上面浮点数的知识算一算这个题目的答案
首先我们看printf("n的值:%d\n", n);
这个显然打印结果是n的值为9
再看
printf("*pfloat的值:%f\n", *pFloat);
把int的值通过float指针访问(以读取float的方式去读取int的n)
n=9的补码
(这个地方不考虑大小端,因为你不管是大端还是小端,只是存放方法不一样,但是你存进去的值和取出来的值是一样的)
0000 0000 0000 0000 0000 0000 0000 0000 1001
转换成浮点数的表示方式
0 00000000 00000000000000000000000000001001
这个时候刚好就是E为全0的时候
这时,浮点数的指数E等于1-127(或者1-1023) 即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示土0,以及接近于0的很小的数字。
这个地方我们的M的值不再加上第一位的1,刚好是0.00000000000000000000000000001001
0.00000000000000000000000000001001*2^-126
是一个很接近0的数
又因为%f打印只能打印小数点后6位
所以打印结果就是0.00000
printf("*pFloat的值为:%f\n", *pFloat);
这个很显然打印结果是9.00000
那么,这个呢?
printf("num的值为:%d\n", n);
9.0先以浮点数的方式存放到内存中
换算成二进制的科学计数法就是
1.001*2^3
(-1)^0*1.001*2^3
S=0
M=1.001
E=3
0 10000010 00100000000000000000000
这个时候%d打印相当于就是把这一串当作补码去打印
正数的原反补相同
计算的结果是1,091,567,616
刚好我们直接运行代码验证一下,果然如此