OFC2020论文笔记 M1G.3:16-QAM Probabilistic Constellation Shaping by Learningthe Distribution of Transmit

星座整形可以分为:几何整形,概率整形

这篇文章做了16QAM的几何整形和概率整形,几何整形通过最大化互信息量,概率整形利用CCDM,验证了三种星座成型方法,结果优于M-B星座整形技术

 

原理

最大化发射端和接收端的互信息量,调整symbol的概率

 

仿真结果

文章尝试了三种场景

1.单通道 2.双通道 10Gbaud 16QAM 100GHz的间隔  3.信号和激光泵浦一起传输

利用投影梯度下降进行优化,得到几何整形的星座图之后,利用CCDM进行概率整形

作者说为了公平的比较,让这三个场景的熵几乎一样,我觉着3.18,3.59和3.7475差的有点大??熵大的话,误码率就低

SER结果

相同的熵值情况下,文中方案好于M-B分布

 

实验结果

实验系统做的是第二种方案,应该做了DSP,直接判决应该没这么好,误码率增益在图里。

创新点:

1.这篇文章就是几何整形+概率整形,增益比M-B整形要好,因为不是单纯的AWGN信道,加了光纤

 

看完论文需要解决的疑问:

1.这个投影梯度下降到底是什么?作者到底用没用神经网络?

2.第三种方案是什么意思?为什么要加一个pump,和信号一起传输?

 

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值