地宫取宝

问题描述
  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

  地宫的入口在左上角,出口在右下角。

  小明被带到地宫的入口,国王要求他只能向右或向下行走。

  走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

  当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

  请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

  接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1
样例输出
2
样例输入
2 3 2
1 2 3
2 1 5
样例输出
14

//AC代码 网上转载
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define eps 10e-10
#define N 1000000007
int ans;
int d[51][51][13][14];
int p[51][51];
int n,m,k;
int dfs(int x,int y,int num,int maxvalue){
  if(d[x][y][num][maxvalue+1] != -1){//表示这个状态已经访问过了,方案数已经确定了.
    return d[x][y][num][maxvalue+1];
  }
  int t = 0;
  if(x == n-1 && y == m-1){
    if(num==k||(num==k-1&&p[x][y]>maxvalue))
       return d[x][y][num][maxvalue+1] = 1;
    else
       return d[x][y][num][maxvalue+1] = 0;
  }
  if(x + 1 < n){
    if(p[x][y] > maxvalue){
      t += dfs(x+1,y,num+1,p[x][y]);
      t %= N;
    }
      t += dfs(x+1,y,num,maxvalue);
      t %= N;
  }
  if(y + 1 < m){
    if(p[x][y] > maxvalue){
      t += dfs(x,y+1,num+1,p[x][y]);
      t %= N;
    }
      t += dfs(x,y+1,num,maxvalue);
      t %= N;
  }
  d[x][y][num][maxvalue+1] = t;
  return d[x][y][num][maxvalue+1];
}
int main(){
  while(cin>>n>>m>>k){
    for(int i = 0; i < n; ++i){
      for(int j = 0; j < m; ++j)
      cin>>p[i][j];
    }
    memset(d,-1,sizeof(d));
    d[0][0][0][0] = dfs(0,0,0,-1);//因为宝贝的最小价值可以为0
    cout<<d[0][0][0][0]<<endl;
  }
  return 0;
}

//我的模范代码 只有57分  7个用例3个过不去  不知哪里错了?求大神指点
 #include "iostream"
#include "cstring"
#define MOD 1000000007
using namespace std;
int n,m,k;
int map[55][55];
int dp[55][55][15][15];
int next[2][2]={{1,0},{0,1}};
int dfs(int x,int y,int num,int big);
int main(){
	memset(dp,-1,sizeof(dp));
	int i,j;
	cin>>n>>m>>k;
	for(i=0;i<n;i++)
	for(j=0;j<m;j++)
		cin>>map[i][j];
	dp[0][0][0][0]=dfs(0,0,0,-1);
  	cout<<dp[0][0][0][0];
	return 0;
}
int dfs(int x,int y,int num,int big){
	int t=0;
	if(dp[x][y][num][big+1]!=-1)
	return dp[x][y][num][big+1];
	if(x==n-1&&y==m-1){  
		if(num==k||(num==k-1&&map[x][y]>big))
	  return dp[x][y][num][big+1]=1;
	  else 
	  return dp[x][y][num][big+1]=0;
	}	
	int i;
	for(i=0;i<2;i++){
		int a=x+next[i][0];
		int b=y+next[i][1];
		if(a>=n||b>=m)
		continue;
		if(map[x][y]<=big){
			t+=dfs(a,b,num,big);
			t%=MOD; 
		}		 
		else{
			t+=dfs(a,b,num,big)%MOD+dfs(a,b,num+1,map[x][y])%MOD;
			t%=MOD; 
		}		   
	}	
	return dp[x][y][num][big+1]=t;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值