算法提高 学霸的迷宫
时间限制:1.0s 内存限制:256.0MB
问题描述
学霸抢走了大家的作业,班长为了帮同学们找回作业,决定去找学霸决斗。但学霸为了不要别人打扰,住在一个城堡里,城堡外面是一个二维的格子迷宫,要进城堡必须得先通过迷宫。因为班长还有妹子要陪,磨刀不误砍柴功,他为了节约时间,从线人那里搞到了迷宫的地图,准备提前计算最短的路线。可是他现在正向妹子解释这件事情,于是就委托你帮他找一条最短的路线。
输入格式
第一行两个整数n, m,为迷宫的长宽。
接下来n行,每行m个数,数之间没有间隔,为0或1中的一个。0表示这个格子可以通过,1表示不可以。假设你现在已经在迷宫坐标(1,1)的地方,即左上角,迷宫的出口在(n,m)。每次移动时只能向上下左右4个方向移动到另外一个可以通过的格子里,每次移动算一步。数据保证(1,1),(n,m)可以通过。
接下来n行,每行m个数,数之间没有间隔,为0或1中的一个。0表示这个格子可以通过,1表示不可以。假设你现在已经在迷宫坐标(1,1)的地方,即左上角,迷宫的出口在(n,m)。每次移动时只能向上下左右4个方向移动到另外一个可以通过的格子里,每次移动算一步。数据保证(1,1),(n,m)可以通过。
输出格式
第一行一个数为需要的最少步数K。
第二行K个字符,每个字符∈{U,D,L,R},分别表示上下左右。如果有多条长度相同的最短路径,选择在此表示方法下字典序最小的一个。
第二行K个字符,每个字符∈{U,D,L,R},分别表示上下左右。如果有多条长度相同的最短路径,选择在此表示方法下字典序最小的一个。
样例输入
Input Sample 1:
3 3
001
100
110
Input Sample 2:
3 3
000
000
000
3 3
001
100
110
Input Sample 2:
3 3
000
000
000
样例输出
Output Sample 1:
4
RDRD
Output Sample 2:
4
DDRR
4
RDRD
Output Sample 2:
4
DDRR
数据规模和约定
有20%的数据满足:1<=n,m<=10
有50%的数据满足:1<=n,m<=50
有100%的数据满足:1<=n,m<=500。
有50%的数据满足:1<=n,m<=50
有100%的数据满足:1<=n,m<=500。
#include <iostream>
#include <string.h>
#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;
const int N=500+10;
char map[N][N];
int n,m;
bool book[N][N];
struct Node{
int x,y,t;
string s;
}node,tmp;
char c[6]="DLRU";
int step[4][2]={{1,0},{0,-1},{0,1},{-1,0}}; //字典序顺序 下左右上 {U,D,L,R}
queue<Node> q;
int main()
{
int i,j;
while(cin>>n>>m){
for(i=1;i<=n;i++)
for(j=1;j<=m;j++){
cin>>map[i][j];
book[i][j]=0;
}
node.x=1;
node.y=1;
node.t=0;
node.s="";
q.push(node);
while(!q.empty()){
tmp=q.front();
if(tmp.x==n&&tmp.y==m)
break;
q.pop();
for(i=0;i<4;i++){
int a=tmp.x+step[i][0];
int b=tmp.y+step[i][1];
if(a<1||a>n||b<1||b>m||book[a][b]||map[a][b]=='1')
continue;
book[a][b]=1;
node.x=a;
node.y=b;
node.t=tmp.t+1;
node.s=tmp.s+c[i];
q.push(node);
}
}
cout<<tmp.t<<endl;
cout<<tmp.s<<endl;
}
return 0;
}