[Fourier]傅里叶级数中虚数部分j去了哪里

一、本文前提

已知欧拉公式为:
e j θ = c o s θ + j ⋅ s i n θ e^{j\theta}=cos\theta+j\cdot sin\theta ejθ=cosθ+jsinθ
傅里叶级数公式为:
f ( t ) = ∑ n = − ∞ n = + ∞ C n ⋅ e j ⋅ 2 π n t T f(t)=\sum_{n=-\infty}^{n=+\infty}C_{n}\cdot e^\frac{j\cdot2\pi nt}{T} f(t)=n=n=+CneTj2πnt
其中:
C n = 1 T ∫ − T 2 T 2 f ( t ) e − j ⋅ 2 π n t T d t C_{n}=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-\frac{j\cdot2\pi nt}{T}}d_t Cn=T12T2Tf(t)eTj2πntdt
本文不对上述公式做出证明,而是默认读者已了解上述公式,并且掌握实数、虚数的概念。
本文还用到基础的积分公式、奇偶函数积分的性质,默认读者已经掌握此类知识。

二、问题提出

     ~~~~     对于傅里叶级数公式 f ( t ) = ∑ n = − ∞ n = + ∞ C n ⋅ e j ⋅ 2 π n t T f(t)=\sum_{n=-\infty}^{n=+\infty}C_{n}\cdot e^\frac{j\cdot2\pi nt}{T} f(t)=n=n=+CneTj2πnt,其中左侧 f ( t ) f(t) f(t)定义域与值域都是实数,而右侧包含 e j ⋅ 2 π n t T e^\frac{j\cdot2\pi nt}{T} eTj2πnt,是一个虚数型式,那么为什么右侧的虚数 j j j去了哪里?
     ~~~~     我们可以想到虚数部分很可能在公式 ∑ \sum 部分相互约掉了,那么是怎么约掉的呢?下面本文将推导证明虚数约去的过程。
     ~~~~     即证明对于任意的实数 t 0 t_{0} t0 f ( t 0 ) = ∑ n = − ∞ n = + ∞ C n ⋅ e j ⋅ 2 π n t 0 T f(t_{0})=\sum_{n=-\infty}^{n=+\infty}C_{n}\cdot e^\frac{j\cdot2\pi nt_{0}}{T} f(t0)=n=n=+CneTj2πnt0的虚部为 0 0 0

三、证明过程

对于任意的实数 t 0 t_{0} t0
f ( t 0 ) = ∑ n = − ∞ n = + ∞ C n ⋅ e j ⋅ 2 π n t 0 T f(t_{0})=\sum_{n=-\infty}^{n=+\infty}C_{n}\cdot e^\frac{j\cdot2\pi nt_{0}}{T} f(t0)=n=n=+CneTj2πnt0
我们令
h ( t 0 , n ) = C n ⋅ e j ⋅ 2 π n t 0 T h(t_{0},n)=C_{n}\cdot e^\frac{j\cdot2\pi nt_{0}}{T} h(t0,n)=CneTj2πnt0
那么有
f ( t 0 ) = h ( t 0 , − ∞ ) + . . . + h ( t 0 , 0 ) + . . . + h ( t 0 , + ∞ ) f(t_{0})=h(t_{0},-\infty)+...+h(t_{0},0)+...+h(t_{0},+\infty) f(t0)=h(t0,)+...+h(t0,0)+...+h(t0,+)
我们只要证明 h ( t 0 , − n 0 ) h(t_{0},-n_{0}) h(t0,n0)+ h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0)的虚部为 0 0 0即可以证明 f ( t 0 ) f(t_{0}) f(t0)的虚部为 0 0 0

h ( t 0 , n 0 ) = C n 0 ⋅ e j ⋅ 2 π n 0 t 0 T = C n 0 ⋅ ( c o s ( 2 π n 0 t 0 T ) + j ⋅ s i n ( 2 π n 0 t 0 T ) ) = ( 1 T ∫ − T 2 T 2 f ( t ) e − j ⋅ 2 π n 0 t T d t ) ⋅ ( c o s ( 2 π n 0 t 0 T ) + j ⋅ s i n ( 2 π n 0 t 0 T ) ) \begin{aligned} h(t_{0},n_{0})&=C_{n_{0}}\cdot e^\frac{j\cdot2\pi n_{0}t_{0}}{T}\\ &=C_{n_{0}}\cdot(cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot sin(\frac{2\pi n_{0}t_{0}}{T})) \\ &=(\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-\frac{j\cdot2\pi n_{0}t}{T}}d_t)\cdot(cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot sin(\frac{2\pi n_{0}t_{0}}{T})) \end{aligned} h(t0,n0)=Cn0eTj2πn0t0=Cn0(cos(T2πn0t0)+jsin(T2πn0t0))=(T12T2Tf(t)eTj2πn0tdt)(cos(T2πn0t0)+jsin(T2πn0t0))
因为公式中的 n 0 n_{0} n0 t 0 t_{0} t0 T T T π \pi π都是一个确定的值,因此 ( c o s ( 2 π n 0 t 0 T ) + j ⋅ s i n ( 2 π n 0 t 0 T ) ) (cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot sin(\frac{2\pi n_{0}t_{0}}{T})) (cos(T2πn0t0)+jsin(T2πn0t0))部分是一个确定的复数,可以将其写入到前面的积分中,那么 h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0)可以写成:
h ( t 0 , n 0 ) = 1 T ∫ − T 2 T 2 f ( t ) e − j ⋅ 2 π n 0 t T ⋅ ( c o s ( 2 π n 0 t 0 T ) + j ⋅ s i n ( 2 π n 0 t 0 T ) ) d t = 1 T ∫ − T 2 T 2 f ( t ) ⋅ ( c o s ( 2 π n 0 t T ) − j ⋅ s i n ( 2 π n 0 t T ) ) ⋅ ( c o s ( 2 π n 0 t 0 T ) + j ⋅ s i n ( 2 π n 0 t 0 T ) ) d t = 1 T ∫ − T 2 T 2 f ( t ) ⋅ ( c o s ( 2 π n 0 t T ) c o s ( 2 π n 0 t 0 T ) − j ⋅ s i n ( 2 π n 0 t T ) c o s ( 2 π n 0 t 0 T ) + j ⋅ c o s ( 2 π n 0 t T ) s i n ( 2 π n 0 t 0 T ) − ( j ) 2 ⋅ s i n ( 2 π n 0 t T ) s i n ( 2 π n 0 t 0 T ) ) d t \begin{aligned} h(t_{0},n_{0}) &= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-\frac{j\cdot2\pi n_{0}t}{T}}\cdot(cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot sin(\frac{2\pi n_{0}t_{0}}{T}))d_{t}\\ &= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cdot (cos(\frac{2\pi n_{0}t}{T})-j\cdot sin(\frac{2\pi n_{0}t}{T}))\cdot(cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot sin(\frac{2\pi n_{0}t_{0}}{T}))d_{t}\\ &= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cdot (cos(\frac{2\pi n_{0}t}{T})cos(\frac{2\pi n_{0}t_{0}}{T})-j\cdot sin(\frac{2\pi n_{0}t}{T})cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot cos(\frac{2\pi n_{0}t}{T})sin(\frac{2\pi n_{0}t_{0}}{T}) -(j)^{2}\cdot sin(\frac{2\pi n_{0}t}{T})sin(\frac{2\pi n_{0}t_{0}}{T}) )d_{t}\\ \end{aligned} h(t0,n0)=T12T2Tf(t)eTj2πn0t(cos(T2πn0t0)+jsin(T2πn0t0))dt=T12T2Tf(t)(cos(T2πn0t)jsin(T2πn0t))(cos(T2πn0t0)+jsin(T2πn0t0))dt=T12T2Tf(t)(cos(T2πn0t)cos(T2πn0t0)jsin(T2πn0t)cos(T2πn0t0)+jcos(T2πn0t)sin(T2πn0t0)(j)2sin(T2πn0t)sin(T2πn0t0))dt
因为 h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0)的积分区域为 ∫ − T 2 T 2 \int_{-\frac{T}{2}}^{\frac{T}{2}} 2T2T因此对于奇函数积分为 0 0 0 h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0)中含有
s i n ( 2 π n 0 t T ) sin(\frac{2\pi n_{0}t}{T}) sin(T2πn0t)部分的积分后等于 0 0 0,因此:
h ( t 0 , n 0 ) = 1 T ∫ − T 2 T 2 f ( t ) ⋅ ( c o s ( 2 π n 0 t T ) c o s ( 2 π n 0 t 0 T ) − j ⋅ s i n ( 2 π n 0 t T ) c o s ( 2 π n 0 t 0 T ) + j ⋅ c o s ( 2 π n 0 t T ) s i n ( 2 π n 0 t 0 T ) − ( j ) 2 ⋅ s i n ( 2 π n 0 t T ) s i n ( 2 π n 0 t 0 T ) ) d t = 1 T ∫ − T 2 T 2 f ( t ) ⋅ ( c o s ( 2 π n 0 t T ) c o s ( 2 π n 0 t 0 T ) + j ⋅ c o s ( 2 π n 0 t T ) s i n ( 2 π n 0 t 0 T ) ) d t \begin{aligned} h(t_{0},n_{0})&= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cdot (cos(\frac{2\pi n_{0}t}{T})cos(\frac{2\pi n_{0}t_{0}}{T})-j\cdot sin(\frac{2\pi n_{0}t}{T})cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot cos(\frac{2\pi n_{0}t}{T})sin(\frac{2\pi n_{0}t_{0}}{T}) -(j)^{2}\cdot sin(\frac{2\pi n_{0}t}{T})sin(\frac{2\pi n_{0}t_{0}}{T}) )d_{t}\\ &= \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cdot (cos(\frac{2\pi n_{0}t}{T})cos(\frac{2\pi n_{0}t_{0}}{T})+j\cdot cos(\frac{2\pi n_{0}t}{T})sin(\frac{2\pi n_{0}t_{0}}{T}) )d_{t} \end{aligned} h(t0,n0)=T12T2Tf(t)(cos(T2πn0t)cos(T2πn0t0)jsin(T2πn0t)cos(T2πn0t0)+jcos(T2πn0t)sin(T2πn0t0)(j)2sin(T2πn0t)sin(T2πn0t0))dt=T12T2Tf(t)(cos(T2πn0t)cos(T2πn0t0)+jcos(T2πn0t)sin(T2πn0t0))dt
至此 h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0)的虚部只剩下了
1 T ∫ − T 2 T 2 f ( t ) ⋅ j ⋅ c o s ( 2 π n 0 t T ) s i n ( 2 π n 0 t 0 T ) ) d t \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t) \cdot j\cdot cos(\frac{2\pi n_{0}t}{T})sin(\frac{2\pi n_{0}t_{0}}{T}) )d_{t} T12T2Tf(t)jcos(T2πn0t)sin(T2πn0t0))dt
j j j s i n ( 2 π n 0 t 0 T ) sin(\frac{2\pi n_{0}t_{0}}{T}) sin(T2πn0t0)写在前面即:( s i n ( 2 π n 0 t 0 T ) sin(\frac{2\pi n_{0}t_{0}}{T}) sin(T2πn0t0)是个确定的数值所以可以提到积分号之外)
j ⋅ s i n ( 2 π n 0 t 0 T ) ⋅ 1 T ∫ − T 2 T 2 f ( t ) c o s ( 2 π n 0 t T ) d t j\cdot sin(\frac{2\pi n_{0}t_{0}}{T})\cdot \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(\frac{2\pi n_{0}t}{T})d_{t} jsin(T2πn0t0)T12T2Tf(t)cos(T2πn0t)dt
上式即为 h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0)的虚数部分。

类似的 h ( t 0 , − n 0 ) h(t_{0}, -n_{0}) h(t0,n0)的虚数部分可以写成
j ⋅ s i n ( 2 π ( − n 0 ) t 0 T ) ⋅ 1 T ∫ − T 2 T 2 f ( t ) c o s ( 2 π ( − n 0 ) t T ) d t j\cdot sin(\frac{2\pi (-n_{0})t_{0}}{T})\cdot \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(\frac{2\pi (-n_{0})t}{T})d_{t} jsin(T2π(n0)t0)T12T2Tf(t)cos(T2π(n0)t)dt
h ( t 0 , n 0 ) h(t_{0},n_{0}) h(t0,n0) h ( t 0 , − n 0 ) h(t_{0},-n_{0}) h(t0,n0)的虚数部分相加等于 0 0 0,即得证 f ( t 0 ) f(t_{0}) f(t0)的虚部为 0 0 0,那么即证明:
f ( t ) = ∑ n = − ∞ n = + ∞ C n ⋅ e j ⋅ 2 π n t T f(t)=\sum_{n=-\infty}^{n=+\infty}C_{n}\cdot e^\frac{j\cdot2\pi nt}{T} f(t)=n=n=+CneTj2πnt
的虚数部分为 0 0 0,求证得证。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值