一、摘要
对于满足指定分布的自由变量,如果无法通过分布函数公式计算得到其期望和方差,可以考虑使用采样法得到其期望、方差值的近似值。在此过程中需要按照特定的分布函数进行随机采样,并统计采样数据,可以使用蒙特卡洛或者接受拒接方法得到满足特定分布的随机变量。本文简要介绍了如何使用C++random
头文件中自带的函数得到满足 均匀分布 和 高斯分布的变量 。
二、代码
0. c++中随机数生成的基本步骤
- 定义随机数生成器对象
gen
,random.h头文件中包含几个随机数生成器类,包括mt19937、default_random_engine等等。 - 定义随机数分布对象
dis
,randome头文件中包含了均匀分布(uniform_int_distribution,uniform_real_distribution)、正态分布(normal_distribution)等等几种常用分布类。 - 使用
dis(gen)
产生一个满足dis
分布的随机变量。
random头文件中关于随机数生成器、分布类的详细信息请参考cplusplus官网。
1. 均匀分布代码
#include <iostream>
#include <random>
#include <time.h>
using namespace std;
int main() {
mt19937 gen((unsigned int) time(nullptr)); // 定义随机数生成器对象gen,使用time(nullptr)作为随机数生成器的种子
uniform_real_distribution<double> dis(-1.0, 1.0); // 定义随机数分布器对象dis,为在[-1.0,1.0]区间内的均匀分布
for (int i = 0; i < 10; i++) {
cout << dis(gen) << endl;
}
return 0;
}
输出结果为:
0.946503
0.823232
0.340609
0.634292
-0.499202
0.350881
0.925468
-0.914869
-0.648034
-0.36995
2. 高斯分布代码
#include <iostream>
#include <random>
#include <time.h>
using namespace std;
int main() {
mt19937 gen((unsigned int) time(nullptr)); // 定义随机数生成器对象gen,使用time(nullptr)作为随机数生成器的种子
normal_distribution<double> dis(0.0, 1.0); // 定义随机数分布器对象dis,期望为0.0,标准差为1.0的正态分布
for (int i = 0; i < 10; i++) {
cout << dis(gen) << endl;
}
return 0;
}
输出结果为:
-0.188695
0.0804475
-0.647262
-0.0837869
0.84727
-0.115599
0.836252
0.821125
-2.17249
2.01725
三、注意事项
读者可能会遇到下面的代码(比如在[C++11]C++11带来的随机数生成器中介绍了这种在linux下的随机数生成方式):
int main{
...
random_device rd;
mt19937 gen(rd());
for (int i = 0; i < 10; i++) {
cout << gen() << endl;
}
...
return 0;
}
该代码在Linux下运行正常,但是在windows下每次运行的结果都相同。比如在我的windows电脑上两次运行的结果都是:
2412496532
3119216746
1495923606
3931352601
26313293
2552602825
3745457912
2213446826
4119067789
4188234190
在[C++11]C++11带来的随机数生成器中讲这是因为在windows下random_device
使用的是rand_s
,因此本博客中使用time(nullptr)
作为种子。
同时[C++11]C++11带来的随机数生成器和c/c++产生随机数这两篇文章写得很好,很有参考价值。
四、参考引用
[1].cplusplus官网
[2].[C++11]C++11带来的随机数生成器
[3].c/c++产生随机数