层次狄利克雷过程HDP(Hierarchical Dirichlet Processes)

HDP本质是一个聚类算法,自动决定聚类的个数。

HDP-HMM也是一个聚类算法,自动决定HMM的隐状态的个数,以每个隐状态作为一个聚类。

LDA是主题模型,可以被用作聚类算法。

HDP也是个主题模型。

The HDP  is an unsupervised non-parametric hierarchical Bayesian topic model and was
originally proposed for word-document analysis. It clusters the frequently co-occurring words
within the same documents into the same topics. Furthermore, different from the other clustering
topic models, such as LDA , HDP is able to automatically determine the number of clusters。

[1] M. Y. Yang, W. Liao, Y. Cao, and B. Rosenhahn, “Video event recognition and anomaly detection by combining gaussian process and hierarchical Dirichlet process models,” Photogramm. Eng. Remote Sensing, vol. 84, no. 4, pp. 203–214, 2018.


以下转自:https://blog.csdn.net/weixin_43166819/article/details/103595700


参考:【博客】、【博客】、【博客

适合做数据的聚类,每个进餐厅的人选择一张桌子就坐,每个桌子有第一个人点一道菜以后所有这张桌子上的人共同享用,数据也是类似,对每个数据进入系统,选择一个新话题或者加入一个旧话题得概率表示。
参考论文:【分层 Dirichlet 过程及其应用综述】
DP解决一组数据的聚类,HDP分层DP解决多组数据得聚类问题。


以下转自:https://blog.csdn.net/caoeryingzi/article/details/5967093

该博客的博主据说是《分层Dirichlet过程及其应用综述》的作者。

既然我坚持了那么久,看懂了,把我博士工作耽误的其实也不少,也不算耽误,主要是基础差,这个算法又麻烦,所以一直看到现在也没出成果。我想如果当时有人能够指导我,告诉我这个很难,需要专业的理论背景等知识,我可能不会继续下去。而如果有人一起学习讨论,可能现在也会好多了。但是,这些都是假设,不是吗?

但是,既然做了,实现了,就还是要继续关注下去。

首先,HDP模型,不是万能的,但是至少目前在我看来是非常灵活的一个模型。从HDP延伸出来的模型,最著名的就是随着HDP引入作者介绍的HDP-HMM模型。这说明了,HDP不仅仅可以作为一个模型算法,而且还可以作为别的模型的先验分布而存在,这是HDP最有魅力的地方,我觉得。

我们知道,由于HDP模型可以生成聚类数目,因此,用到HMM上,HMM的聚类数目就可以不用人为输入了。

HDP模型的开始是用在文本处理中的,但是现在在图像视频处理中,应用尤其广泛。

在模型中,有几个特点,当然包括缺点。首先计算量太大,即使是变分解也需要很大的计算量。但是,HDP模型很美,再者能够生成聚类数目和完成数据建模,比较方便用于推断和预测等工作。

个人总结:HDP是聚类算法,自动决定聚类的个数。HMM是一个序列贝叶斯模型,需要指定状态的个数。HDP-HMM把二者结合,使HMM自动决定状态个数。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值