【算法】狄利克雷过程 (Dirichlet过程)

本文探讨了狄利克雷过程(DP)及其在聚类分析中的应用,特别是在面对未知聚类数量时的优势。通过介绍狄利克雷混合模型(DPMM),解释了如何使用DP来自动确定聚类数目,并讨论了其在高斯混合模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本小节是层次狄利克雷过程的笔记。

狄利克雷混合模型DPMM是一种可以自动确定聚类类别数量的聚类方法。

狄利克雷过程DP是“分布的分布”,由2个参数\alphaG_0确定,即G\sim DP(\alpha,G_0)。其中\alpha是分布参数,值越大,分布越接近于均匀分布,值越小,分布越集中。G_0是基分布。

于是狄利克雷过程就是,G_0经过狄利克雷过程,输出了一个G\alpha越大,输出的G与输入的G_0越接近。

何时需要狄利克雷分布呢? 

  1. 聚类的数量未知;
  2. 非参数化,即不确定参数,如果需要的话,参数的数量是可以变化的;
  3. 聚类的数量服从于概率分布。

本小节是徐亦达机器学习:Dirichlet Process 狄利克雷过程的笔记。

Bayesian Non Parametric

有一些点(二维数据)是从高斯混合模型中产生的,那它到底有几个混合呢?即它的k是多少呢?(k参考高斯混合模型Gaussian Mixture Model

如果G是从DP(\alpha,H)产生的,那么G就是一个随机离散测度。G是由无穷个atam组成的,\theta_i是每个棍子的位置,\pi_i是棍子的权重。

不管如何划分\theta的空间,G在每个空间上相对应的测度服从一个狄利克雷分布,此分布的参数是 base measure H在每个空间上的测度*\alpha

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值