华为OD-光伏场地建设规划 java 0224

本文介绍了如何解决在特定区域内寻找满足发电量要求的矩形光伏电站建设区域的问题。通过遍历所有可能的矩形区域并计算总发电量,确定符合条件的区域数量。讨论了算法的时间复杂度和空间复杂度,并提供了Java实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

祖国西北部有一片大片荒地,其中零星的分布着一些湖泊,保护区,矿区;整体上常年光照良好,但是也有一些地区光照不太好。某电力公司希望在这里建设多个光伏电站,生产清洁能源。对每平方公里的土地进行了发电评估,其中不能建设的区域发电量为0kw,可以发电的区域根据光照,地形等给出了每平方公里年发电量x千瓦。我们希望能够找到其中集中的矩形区域建设电站,能够获得良好的收益。

输入描述

第一行输入为调研的地区长,宽,以及准备建设的电站【长宽相等,为正方形】的边长,最低要求的发电量
之后每行为调研区域每平方公里的发电量
例如,输入为:
2 5 2 6
1 3 4 5 8
2 3 6 7 1
表示调研的区域大小为长2宽5的矩形,我们要建设的电站的边长为2,建设电站最低发电量为6

输出描述

输出为这样的区域有多少个
上述输入长宽为2的正方形满足发电量大于等于6的区域有4个。
则输出为:
4

备注

其中 被调研的区域的长宽均大于等于1,建设电站的边长大于等于1,任何区域的发电量大于等于0

示例一

输入

2 5 2 6
1 3 4 5 8
2 3 6 7 1

Copy

输出

4

Copy

说明

输入长为2,宽为5的场地,建设的场地为正方形场地,边长为2,要求场地的发电量大于等于6

示例二

输入

2 5 1 6
1 3 4 5 8
2 3 6 7 1

Copy

输出

3

Copy

说明

输入长为2,宽为5的场地,建设的场地为正方形场地,边长为1,要求场地的发电量大于等于6

示例三

输入

2 5 1 0
1 3 4 5 8
2 3 6 7 1

Copy

输出

10

Copy

说明

输入长为2,宽为5的场地,建设的场地为正方形场地,边长为1,要求场地的发电量大于等于0即可

思路解析和复杂度分析

解题思路:

这道题目的关键是在给定的区域内找到满足条件的矩形区域。我们需要在给定的长宽范围内遍历所有可能的矩形区域,然后计算每个矩形区域内所有元素的和,判断是否大于等于最低发电量。

以下是解题步骤:

  1. 首先读取输入,包括长宽、准备建设的电站边长和最低发电量等信息。

  2. 定义一个二维数组 area 来存储调研区域每平方公里的发电量。

  3. 根据输入的长宽,遍历调研区域,并将每个点的发电量存入 area 二维数组。

  4. 初始化一个计数变量 count 用于计算满足条件的矩形区域数量。

  5. 使用两层嵌套循环遍历所有可能的矩形区域。对于每个矩形区域,再使用两层嵌套循环计算矩形区域内所有元素的和,判断是否大于等于最低发电量。如果满足条件,则将 count 加一。

  6. 最后输出 count,即满足条件的矩形区域数量。

复杂度分析:

由于采用了四层嵌套循环,时间复杂度为 O(n^4),其中 n 是调研区域的长度或宽度。空间复杂度为 O(n^2),因为需要使用二维数组 area 存储调研区域的发电量。

这种暴力遍历的方法在 n 较小的情况下可以解决问题,但在较大规模问题上可能会导致运行时间过长。实际工程中可以考虑使用更优化的算法,如动态规划或其他方法,降低时间复杂度。

参考解题

Java

import java.util.Scanner;
public class Main{
  public static void main(String[] args) {
    try (Scanner scanner = new Scanner(System.in)) {

      int r = scanner.nextInt();
      int c = scanner.nextInt();

      int s = scanner.nextInt();
      int min = scanner.nextInt();

      int[][] matrix = new int[r][c];
      for (int i = 0; i < r; i++) {
        for (int j = 0; j < c; j++) {
          matrix[i][j] = scanner.nextInt();
        }
      }

      System.out.println(solution(matrix, r, c, s, min));
    }

  }


  public static int solution(int[][] matrix, int r, int c, int s, int min) {
    int zr = r - s + 1;
    int zc = c - s + 1;

    int[][] zdps = new int[r][zc];

    for (int i = 0; i < matrix.length; i++) {
      int[] row = matrix[i];

      for (int j = 0; j < s; j++) {
        zdps[i][0] += row[i];
      }

      for (int j = 1; j < zc; j++) {
        zdps[i][j] = zdps[i][j - 1] - row[j - 1] + row[j + s - 1];
      }
    }

    matrix = zdps;

    int res = 0;

    int[][] zrowdps = new int[zr][zc];

    for (int j = 0; j < zc; j++) {
      for (int i = 0; i < s; i++) {
        zrowdps[0][j] += matrix[i][j];
      }
      if (zrowdps[0][j] >= min) res++;

      for (int i = 1; i < zip_r; i++) {
        zrowdps[i][j] = zrowdps[i - 1][j] - matrix[i - 1][j] + matrix[i + s - 1][j];
        if (zrowdps[i][j] >= min) res++;
      }
    }

    return res;
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值