【Camera API2】

本文详细介绍了Android P中关于Camera API2的使用,包括HAL组件的Google描述,API2的架构,元数据,多摄像头支持,以及Google相机框架文件夹的结构。重点强调了API2相对于API1的请求基础设计,并提供了调试Google框架的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为MTK对于Android P HAL3项目,Camera APP使用API1的话只能使用AOSP功能(类似三方应用),所以请Camera APP都改为使用API2。

Camera API2 Google说明:

https://developer.android.com/reference/android/hardware/camera2/package-summary

Camera HAL3 Framework架构Google说明:

https://source.android.com/devices/camera/

1. HAL components Google Described

API v2部分,包括APP、CameraManager以及CameraDevice;

CameraService部分,包括CameraService、CameraDeviceClient、Camera3Device;

Binderized HAL部分,包括ICameraProvider、ICameraDevice、ICameraDeviceSession。

1

2. Camera API2 Architecture

相较于Camera API1是senario base,Camera API2是Request Base,

API2对Camera的操作流程用下图可以很全面的概括。

2
其中一些关键的类有:

CameraManager
A system service manager for detecting, characterizing, and connecting to CameraDevices.

CameraManager.AvailabilityCallback
A callback for camera devices becoming available or unavailable to open.

CameraDevice
Th

### Camera API V2 Documentation and Usage Guide The Android platform offers the `android.hardware.camera2` package as part of its framework to provide a more powerful, low-level interface for controlling camera hardware on devices running Android 5.0 (API level 21) or higher[^1]. This new API is designed to give developers greater control over image capture parameters such as exposure time, sensitivity, focus distance, frame processing, and post-processing controls. To work with this API effectively: #### Key Features Supported by Camera API V2 - **Capture Requests**: Each request specifies all desired settings at once. - **Session Management**: Sessions manage how requests are sent to cameras. - **Image Capture Control**: Fine-grained access to various aspects like flash mode, zoom ratio, etc. - **Preview Streams Handling**: Efficient handling of preview streams using ImageReader objects. For integrating OpenCV into projects that utilize these APIs: Ensure proper setup within build environments through CMake commands similar to those shown below[^2]: ```cmake find_package(OpenCV REQUIRED) include_directories(${OpenCV_INCLUDE_DIRS}) target_link_libraries(your_project_name ${OpenCV_LIBS}) ``` This configuration allows leveraging both advanced imaging capabilities provided via Camera2 API alongside computer vision algorithms from OpenCV libraries seamlessly. --related questions-- 1. How can one implement real-time object detection utilizing Camera2 API along with TensorFlow Lite? 2. What steps should be taken when migrating an application from legacy Camera API to Camera2 API? 3. Can you explain methods available under CameraCharacteristics class which help understand device-specific properties better? 4. In what scenarios would it make sense to prefer CameraX over direct use of Camera2 API?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千北@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值