来源:力扣(LeetCode)
描述:
共有 k
位工人计划将 n
个箱子从旧仓库移动到新仓库。给你两个整数 n
和 k
,以及一个二维整数数组 time
,数组的大小为 k x 4
,其中 time[i] = [leftToRighti, pickOldi, rightToLefti, putNewi]
。
一条河将两座仓库分隔,只能通过一座桥通行。旧仓库位于河的右岸,新仓库在河的左岸。开始时,所有 k
位工人都在桥的左侧等待。为了移动这些箱子,第 i
位工人(下标从 0 开始)可以:
- 从左岸(新仓库)跨过桥到右岸(旧仓库),用时
leftToRighti
分钟。 - 从旧仓库选择一个箱子,并返回到桥边,用时
pickOldi
分钟。不同工人可以同时搬起所选的箱子。 - 从右岸(旧仓库)跨过桥到左岸(新仓库),用时
rightToLefti
分钟。 - 将箱子放入新仓库,并返回到桥边,用时
putNewi
分钟。不同工人可以同时放下所选的箱子。
如果满足下面任一条件,则认为工人 i 的 效率低于 工人 j :
leftToRighti + rightToLefti > leftToRightj + rightToLeftj
leftToRighti + rightToLefti == leftToRightj + rightToLeftj
且i > j
工人通过桥时需要遵循以下规则:
- 如果工人
x
到达桥边时,工人y
正在过桥,那么工人x
需要在桥边等待。 - 如果没有正在过桥的工人,那么在桥右边等待的工人可以先过桥。如果同时有多个工人在右边等待,那么 效率最低 的工人会先过桥。
- 如果没有正在过桥的工人,且桥右边也没有在等待的工人,同时旧仓库还剩下至少一个箱子需要搬运,此时在桥左边的工人可以过桥。如果同时有多个工人在左边等待,那么 效率最低 的工人会先过桥。
所有 n
个盒子都需要放入新仓库,请你返回最后一个搬运箱子的工人 到达河左岸 的时间。
示例 1:
输入:n = 1, k = 3, time = [[1,1,2,1],[1,1,3,1],[1,1,4,1]]
输出:6
解释:
从 0 到 1 :工人 2 从左岸过桥到达右岸。
从 1 到 2 :工人 2 从旧仓库搬起一个箱子。
从 2 到 6 :工人 2 从右岸过桥到达左岸。
从 6 到 7 :工人 2 将箱子放入新仓库。
整个过程在 7 分钟后结束。因为问题关注的是最后一个工人到达左岸的时间,所以返回 6 。
示例 2:
输入:n = 3, k = 2, time = [[1,9,1,8],[10,10,10,10]]
输出:50
解释:
从 0 到 10 :工人 1 从左岸过桥到达右岸。
从 10 到 20 :工人 1 从旧仓库搬起一个箱子。
从 10 到 11 :工人 0 从左岸过桥到达右岸。
从 11 到 20 :工人 0 从旧仓库搬起一个箱子。
从 20 到 30 :工人 1 从右岸过桥到达左岸。
从 30 到 40 :工人 1 将箱子放入新仓库。
从 30 到 31 :工人 0 从右岸过桥到达左岸。
从 31 到 39 :工人 0 将箱子放入新仓库。
从 39 到 40 :工人 0 从左岸过桥到达右岸。
从 40 到 49 :工人 0 从旧仓库搬起一个箱子。
从 49 到 50 :工人 0 从右岸过桥到达左岸。
从 50 到 58 :工人 0 将箱子放入新仓库。
整个过程在 58 分钟后结束。因为问题关注的是最后一个工人到达左岸的时间,所以返回 50 。
提示:
- 1 <= n, k <= 104
- time.length == k
- time[i].length == 4
- 1 <= leftToRighti, pickOldi, rightToLefti, putNewi <= 1000
方法:优先队列
思路与算法
在本题中,工人共有 4 种状态:
- 在左侧等待
- 在右侧等待
- 在左侧工作(放下所选箱子)
- 在右侧工作(搬起所选箱子)
每一种工作状态都有相应的优先级计算方法,因此我们用 4 个优先队列来存放处于每种状态下的工人集合:
- 在左侧等待的工人:wait_left,题目中定义的效率越高,优先级越高。
- 在右侧等待的工人:wait_right,题目中定义的效率越高,优先级越高。
- 在左侧工作的工人:work_left,完成时间越早,优先级越高。
- 在右侧工作的工人:work_right,完成时间越早,优先级越高。
我们令 remain 表示右侧还有多少个箱子需要搬运,当 remain > 0 时,搬运工作需要继续。除此之外,题目求解的是最后一个回到左边的工人的到达时间,因此当右侧还有工人在等待或在工作时(即 work_right 或 wait_right 不为空),搬运工作就需要继续:
- 若 work_left 或 work_right 中的工人在此刻已经完成工作,则需要将它们取出并分别加入到 wait_left 和 wait_right 中。
- 若 wait_right 不为空,则取其中优先级最低的工人过桥,将其加入到 work_left 队列中,并将时间更改为过桥后的时间。继续下一轮循环。
- 若 remain > 0,并且 wait_left 不为空,则需要取优先级最低的工人过桥去取箱子,将其加入到 work_right 队列中,令 remain 减 1,并将时间更改为过桥后的时间。继续下一轮循环。
- 若 2 和 3 都不满足,表示当前没有人需要过桥,当前时间应该过渡到 work_left 和 work_right 中的最早完成时间。然后继续下一轮循环。
按照上述过程模拟,直到循环条件不再满足。
代码:
class Solution {
public:
using PII = pair<int, int>;
int findCrossingTime(int n, int k, vector<vector<int>>& time) {
// 定义等待中的工人优先级比较规则,时间总和越高,效率越低,优先级越低,越优先被取出
auto wait_priority_cmp = [&](int x, int y) {
int time_x = time[x][0] + time[x][2];
int time_y = time[y][0] + time[y][2];
return time_x != time_y ? time_x < time_y : x < y;
};
priority_queue<int, vector<int>, decltype(wait_priority_cmp)> wait_left(wait_priority_cmp), wait_right(wait_priority_cmp);
priority_queue<PII, vector<PII>, greater<PII>> work_left, work_right;
int remain = n, cur_time = 0;
for (int i = 0; i < k; i++) {
wait_left.push(i);
}
while (remain > 0 || !work_right.empty() || !wait_right.empty()) {
// 1. 若 work_left 或 work_right 中的工人完成工作,则将他们取出,并分别放置到 wait_left 和 wait_right 中。
while (!work_left.empty() && work_left.top().first <= cur_time) {
wait_left.push(work_left.top().second);
work_left.pop();
}
while (!work_right.empty() && work_right.top().first <= cur_time) {
wait_right.push(work_right.top().second);
work_right.pop();
}
if (!wait_right.empty()) {
// 2. 若右侧有工人在等待,则取出优先级最低的工人并过桥
int id = wait_right.top();
wait_right.pop();
cur_time += time[id][2];
work_left.push({cur_time + time[id][3], id});
} else if (remain > 0 && !wait_left.empty()) {
// 3. 若右侧还有箱子,并且左侧有工人在等待,则取出优先级最低的工人并过桥
int id = wait_left.top();
wait_left.pop();
cur_time += time[id][0];
work_right.push({cur_time + time[id][1], id});
remain--;
} else {
// 4. 否则,没有人需要过桥,时间过渡到 work_left 和 work_right 中的最早完成时间
int next_time = INT_MAX;
if (!work_left.empty()) {
next_time = min(next_time, work_left.top().first);
}
if (!work_right.empty()) {
next_time = min(next_time, work_right.top().first);
}
if (next_time != INT_MAX) {
cur_time = max(next_time, cur_time);
}
}
}
return cur_time;
}
};
执行用时:148 ms, 在所有 C++ 提交中击败了60.27%的用户
内存消耗:20.5 MB, 在所有 C++ 提交中击败了94.52%的用户
复杂度分析
时间复杂度:O(nlogk),其中 n 为箱子的个数,k 为工人的个数。过程中每个队列最多会进出元素 n 次,每次进出的时间复杂度为 O(logk),因此总的时间复杂度为 O(nlogk)。
空间复杂度:O(k)。过程中每个优先队列最多会包含 k 个元素,因此总的空间复杂度为 O(k)。
author:LeetCode-Solution