摄像机识别未戴安全帽系统利用边缘计算+机器学习与深度学习技术,摄像机识别未戴安全帽系统借助现场部署的监控摄像机RTSP协议访问摄像机视频流,实时获取,实时分析,实时报警,并且抓拍人像分析人员信息、识别是不是戴安全帽、同歩声音报警,将报警信息快照和报警视频存入数据库及时推送给相关人员。
YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析,但是YOLOv5在COCO数据集上面的测试效果还是挺不错的。大家对YOLOv5算法的创新性半信半疑,有的人对其持肯定态度,有的人对其持否定态度。在我看来,YOLOv5检测算法中还是存在很多可以学习的地方,虽然这些改进思路看来比较简单或者创新点不足,但是它们确定可以提升检测算法的性能。其实工业界往往更喜欢使用这些方法,而不是利用一个超级复杂的算法来获得较高的检测精度。
摄像机识别未戴安全帽运用边缘算视觉识别算法,运用智能化监控分析与神经网络算法技术识别分析现场隐患,将安全隐患信息推送到相关人员的手机,进行一部分人力成本替换,全天候24h无间断识别现场安全管理预警分析信息内容,进行积极主动的安全识别报警工作。
# 检测类
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
摄像机识别未戴安全帽系统工作原理是否佩戴安全帽进行实时分析录制现场视频、识别和报警,当摄像机识别未戴安全帽系统识别到违规行为时,如发现工作人员未按要求佩戴安全帽或违规吸烟,安全帽识别系统会自动发出警报,在提醒相关人员及时处理,并同步保存违规截图及视频,作为日后查询处理的依据。