桥梁塌陷边坡落石识别系统的核心在于其强大的智能识别能力。桥梁塌陷边坡落石识别系统通过在关键路段部署高分辨率摄像头对桥梁塌陷、边坡落石、泥石流滑坡识别智能分析其风险,确认存在危险迹象触发报警机制,提升部门应急处置效率。一旦系统识别到危险迹象,便会立即触发报警机制。报警信息会通过多种终端设备及时提醒过往车辆,与此同时,系统会将灾害事件的相关信息同步推送至监管和养护单位的值班人员。这些信息包括灾害发生的时间、地点、类型以及初步评估的风险等级等。值班人员收到推送后,能够迅速启动应急响应处置预案,组织专业人员前往现场进行处理。通过这种方式,大大缩短了应急处置的响应时间,提高了部门的应急处置效率。
循环神经网络(Recurrent Neural Network, RNN),指的是一类以序列数据为输入的神经网络模型。与经典的前馈网络不同之处在于,RNN模型处理序列数据能够获取到更多的语义信息、时序信息等。通常,序列数据指的是一条数据内部的元素有顺序关系的数据,如文本、如文章、语句;时序数据,如一周的天气、三个月的股市指数等。通常可用于语音识别、语言模型、机器翻译及时序分析等。
(二)、RNN处理任务示例——以NER为例
NER(Named Entity Recognize,命名实体识别)任务,表示从自然语言文本中,识别出表示真实世界实体的实体名及其类别,如:
句子(1): I like eating apple! 中的 apple 指的是 苹果(食物)
句子(2): The Apple is a great company! 中的 Apple 指的是 苹果(公司)
一般的DNN网络中,输入方式为逐元素输入,即句子内的词单独独立地输入模型进行处理,这将导致上下文信息丢失,这样的结果会导致每个词的输入仅会输出单一结果,与上下文语义无关。如上图示例,若训练集中的苹果一词大部分标记为苹果(食物),则测试阶段所有的苹果也将标记为食物;反之则测试阶段将都标记为公司。
在交通基础设施的日常运维中,桥梁塌陷、边坡落石以及泥石流滑坡等自然灾害是威胁道路安全的重大隐患。传统的人工巡查方式不仅效率低下,而且容易因人为疏忽而遗漏潜在危险。为了有效提升道路安全管理水平,降低灾害风险,我们研发了一套基于 YOLOv11+RNN 深度学习算法的桥梁塌陷边坡落石识别系统。YOLOv11 以其高效的实时性著称,能够在极短的时间内识别出图像中的桥梁、边坡、落石等关键目标。RNN 能够自动学习目标的纹理、形状等特征,从而精准识别出桥梁是否存在塌陷迹象、边坡是否有落石风险以及是否发生泥石流滑坡等情况。
# 检测类
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
桥梁塌陷边坡落石识别系统还具有显著的成本优势。传统的人工巡查需要大量的人力物力投入,而且难以做到 24 小时不间断监控。而本系统通过智能化的识别和预警,有效降低了因人为疏忽导致的安全隐患,减少了对人工巡查的依赖,从而降低了人员成本和工作压力。同时,系统设备的维护成本也相对较低,能够长期稳定运行。桥梁塌陷边坡落石识别系统凭借其先进的深度学习算法和高效的信息推送机制,为道路安全提供了一道坚实的防线。它不仅能够实时监测和预警潜在的自然灾害,还能提升应急处置效率,降低人员成本和压力,具有广阔的应用前景和重要的社会价值。