施工人员未穿工作服检测系统是基于现场前端监控摄像头采集的视频画面,施工人员未穿工作服检测系统应用卷积神经网络算法和边缘计算视觉分析,施工人员未穿工作服检测系统替代后台人员的双眼,实时识别检测现场人员,一旦发现视频画面中有不穿工作服行为,及时警报提示通知安全人员进行处理,提高效率降低人力监控成本。
YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器
并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。
工作服装在实际作业过程中,防止安全事故层面发挥了重要的作用。因而,按规定穿工作服装是安全生产的重要措施。在施工现场安全出口部署施工人员未穿工作服检测系统集成门禁闸机,当作业人员进到安全防范位置工作的时候,门禁系统鉴别,查看是不是穿工作服,假如不穿工作服无法打开门禁。
# From Mr. Dinosaur
import os
def listdir(path, list_name): # 传入存储的list
for file in os.listdir(path):
file_path = os.path.join(path, file)
if os.path.isdir(file_path):
listdir(file_path, list_name)
else:
list_name.append(file_path)
list_name = []
path = 'D:/PythonProject/data/' # 文件夹路径
listdir(path, list_name)
print(list_name)
with open('./list.txt', 'w') as f: # 要存入的txt
write = ''
for i in list_name:
write = write + str(i) + '\n'
f.write(write)
施工人员未穿工作服检测依据智能视频分析和神经网络算法技术,视频画面信息内容实时分析鉴别,无人工干预;施工人员未穿工作服检测尽早发觉监控地区不穿工作服人员,及时预警提醒,将警报截屏和视频储存到数据库,并把报警记录推送到有关人员。