泥石流滑坡灾害检测系统通过部署在关键路段的高清摄像头,泥石流滑坡灾害检测系统能够捕捉到山体的微小变化。利用YOLOv5+CNN算法,系统能够分析这些图像数据,识别出潜在的滑坡迹象。一旦检测到山体滑坡泥石流异常情况,系统会立即发出预警,为相关部门提供宝贵的反应时间。通过不间断的监测,系统能够及时发现边坡的动态态势,对超阈值变形和崩塌、掉块等灾害进行预警。这不仅能够减少交通事故的发生,还能保证铁路运营的安全,为社会稳定和人民生命财产安全提供有力保障。
YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。
随着社会的发展和城市化进程的加快,自然灾害的预防和控制变得愈发重要。泥石流和滑坡作为常见的地质灾害,对人类生命财产安全构成了严重威胁。为了有效预防和减少这些灾害带来的损失,开发一套高效的泥石流滑坡灾害检测系统显得尤为必要。本文介绍的泥石流滑坡灾害检测系统,是一种基于YOLOv5+CNN视觉算法的智能监测技术。随着泥石流滑坡灾害检测系统的不断进步和完善,我们有理由相信,这套系统将在未来的地质灾害防治工作中发挥更大的作用,为构建和谐安全的生活环境做出贡献。
# From Mr. Dinosaur
import os
def listdir(path, list_name): # 传入存储的list
for file in os.listdir(path):
file_path = os.path.join(path, file)
if os.path.isdir(file_path):
listdir(file_path, list_name)
else:
list_name.append(file_path)
list_name = []
path = 'D:/PythonProject/data/' # 文件夹路径
listdir(path, list_name)
print(list_name)
with open('./list.txt', 'w') as f: # 要存入的txt
write = ''
for i in list_name:
write = write + str(i) + '\n'
f.write(write)
泥石流滑坡灾害检测系统的开发和应用,标志着我们在地质灾害防治领域迈出了重要的一步。为了提高系统的识别准确率,我们对系统进行了大量真实场景样本的训练。这包括不同地形、不同天气条件下的山体图像,确保系统在各种应用场景下都能及时准确地发出告警信息。该系统通过现场监控摄像头,对高速公路高危路段的山体进行实时监测,能够全天候24小时不间断工作,有效排除行车、行人、动物等因素的干扰,准确判断落石和滑坡灾害,并及时发出预警信息。