工地视频监控人员行为分析系统利用现场已有的监控监控摄像头实时分析现场视频画面,视频监控人员行为分析系统对监控区域内的人员行为识别如:打电话、睡岗、跌倒、离岗、玩手机、异常徘徊、抽烟等行为进行识别,工地视频监控人员行为分析系统可进行现场物体状态检测:区域入侵识别、物品遗留、人数超员识别等,有效提升现场人员作业积极性。
Python是一门跨平台、脚本以及开发应用的编程语言。Python是一种简单易学并且结合了解释性、编译性、互动性和面向对象的脚本语言。Python提供了高级数据结构,它的语法和动态类型以及解释性使它成为广大开发者的首选编程语言。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。
与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。
工地视频监控人员行为分析系统对作业现场进行全天候24小时不间断监控,更改传统后台监控值勤人员监督分析方式,应用人员行为分析系统(机器视觉+边缘计算分析技术)赋能传统监控终端,对现场实时监控的画面进行主动实时分析主动报警。
# parameters
nc: 3 # number of classes <============ 修改这里为数据集的分类数
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
工地视频监控人员行为分析系统在现场摄像头监控范围内,对现场作业人员开展安全装着穿戴识别如:工作服、安全帽、反光衣、安全带等。当系统检测出有些人未穿工作服、未佩戴安全帽、反光衣、安全带时,立即预警提醒并记录,并联接当场语音播报。监控和鉴别现场的危险行为,如警戒区闯入、周界入侵识别、区域人员徘徊检测、攀高等。