跑冒滴漏监测系统 YOLOv7

跑冒滴漏监测系统应用计算机视觉和深度学习技术对危化品生产区域实时检测,跑冒滴漏监测系统当检测到液体泄露时,立即抓拍存档告警并回传给后台监控平台方便人员及时处理,提高图像数据的实时监控效率。跑冒滴漏监测系统7*24小时不间断对监控画面实时分析监测,避免意外事故发生,同时降低人力巡检的劳动强度,保证人员安全降低运营成本。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

电力/煤矿/化工厂/发电厂等危险厂区因设备磨损或老化偶发溢油时,主要依靠人工巡检,或者通过可燃气体探测器探知,存在时效性差、误差大等问题。跑冒滴漏监测系统通过安装在码头前沿和泵棚中的高清摄像头,可以及时迅速地识别分析监控画面范围内的介质渗漏场景,对于‘跑冒、滴漏’等极小泄漏量的场景有较高的识别率,误报率较低。

# From Mr. Dinosaur
 
import os
 
 
def listdir(path, list_name):  # 传入存储的list
    for file in os.listdir(path):
        file_path = os.path.join(path, file)
        if os.path.isdir(file_path):
            listdir(file_path, list_name)
        else:
            list_name.append(file_path)
 
 
list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)
 
with open('./list.txt', 'w') as f:  # 要存入的txt
    write = ''
    for i in list_name:
        write = write + str(i) + '\n'
    f.write(write)

跑冒滴漏监测系统利用机器视觉+边缘分析深度学习技术对危化品生产区域进行实时监测,当监测到有害物质泄漏时,系统可以及时告警并且将报警信息发给后台监控提醒相关人员及时处理。跑冒滴漏监测系统实时发现生产区域跑冒滴漏异常,有效提升监控效率,同时提高对厂区各区域的安全风险管控能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值