工地扬尘自动监测识别系统能够实时监测工地扬尘情况,工地扬尘自动监测识别系统通过在工地布设摄像头,系统能够全天候、全方位地观测扬尘情况。工地扬尘自动监测识别系统监测结果将通过云端平台进行上传和分析,及时反馈给相关管理部门和施工方。这使得工地扬尘问题能够得到快速响应,并采取相应的治理措施。工地扬尘自动监测识别系统具备高效的识别能力。
在CNN出现之前,对于图像的处理一直都是一个很大的问题,一方面因为图像处理的数据量太大,比如一张512 x 512的灰度图,它的输入参数就已经达到了252144个,更别说1024x1024x3之类的彩色图,这也导致了它的处理成本十分昂贵且效率极低。另一方面,图像在数字化的过程中很难保证原有的特征,这也导致了图像处理的准确率不高。
而CNN网络能够很好的解决以上两个问题。对于第一个问题,CNN网络它能够很好的将复杂的问题简单化,将大量的参数降维成少量的参数再做处理。也就是说,在大部分的场景下,我们使用降维不会影响结果。比如在日常生活中,我们用一张1024x1024x3表示鸟的彩色图和一张100x100x3表示鸟的彩色图,我们基本上都能够用肉眼辨别出这是一只鸟而不是一只狗。这也是卷积神经网络在图像分类里的一个重要应用。
近年来,随着城市化进程的不断推进,工地建设也在蓬勃发展,但与此同时,工地扬尘问题也日益凸显。扬尘不仅影响了周边居民的生活质量,还对环境和健康造成了严重的威胁。为了解决这一问题,工地扬尘自动监测识别系统应运而生。工地扬尘自动监测识别系统基于现场摄像头,通过高精度图像处理算法实现对工地扬尘的自动监测和识别。工地扬尘自动监测识别系统具备高效的识别能力。这使得管理人员能够快速了解扬尘来源并采取相应措施,提高治理效率。
class Detect(nn.Module):
stride = None # strides computed during build
onnx_dynamic = False # ONNX export parameter
def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
super().__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inplace = inplace # use in-place ops (e.g. slice assignment)
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
y = x[i].sigmoid()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy
wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
def _make_grid(self, nx=20, ny=20, i=0):
d = self.anchors[i].device
if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
else:
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
return grid, anchor_grid
工地扬尘自动监测识别系统还具备智能化管理功能。通过与现有的工地管理平台进行整合,系统能够实现对工地扬尘治理措施的自动化调整。工地扬尘自动监测识别系统监测到扬尘超标时,将自动触发报警,要求工地立即采取措施。工地扬尘自动监测识别系统的应用将有效改善工地扬尘问题,并推动城市建设向着更加环保和可持续的方向发展。在未来,我们有信心相信,工地扬尘自动监测识别系统将得到广泛应用,成为城市建设中不可或缺的一部分,为人们创造一个更美好的生活环境。