裸露土堆识别算法基于人工智能视觉分析技术,裸露土堆识别算法通过对路面/建筑工地的图像进行处理和分析,判断土堆的裸露情况。裸露土堆识别算法首先利用图像处理技术,提取出图像中的土堆区域。然后,通过计算土堆中被绿色防尘网覆盖的比例,判断土堆是否裸露。若超过40%的土堆没有被绿色防尘网覆盖,则视为裸露土堆。最后,算法会自动标注裸露土堆,并反馈相应信息给管理人员,以便他们采取相应措施。
OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序,该程序库也可以使用英特尔公司的IPP进行加速处理。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。OpenCV-Python使用Numpy,这是一个高度优化的数据库操作库,具有MATLAB风格的语法。所有OpenCV数组结构都转换为Numpy数组。这也使得与使用Numpy的其他库(如SciPy和Matplotlib)集成更容易。
随着建筑工地的增多,对于土堆的裸露情况进行实时监测和管理变得尤为重要。为了解决这一问题,基于人工智能视觉分析技术的裸露土堆识别算法应运而生。该算法可以实时识别路面/建筑工地中的土堆是否裸露,若超过40%的土堆没有被绿色防尘网覆盖,则视为裸露土堆,并自动标注并反馈管理人员相应信息。裸露土堆识别算法基于人工智能视觉分析技术,算法可以高效准确地识别裸露土堆,避免了人工巡查的繁琐和主观性。
import numpy as np
def convert(size, box):
"""
将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
:param size: 图片的尺寸: [w,h]
:param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
:return: 转换后的 [x,y,w,h]
"""
x1 = int(box[0])
y1 = int(box[1])
x2 = int(box[2])
y2 = int(box[3])
dw = np.float32(1. / int(size[0]))
dh = np.float32(1. / int(size[1]))
w = x2 - x1
h = y2 - y1
x = x1 + (w / 2)
y = y1 + (h / 2)
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return [x, y, w, h]
裸露土堆识别算法是一种创新的解决土堆裸露问题的技术,裸露土堆识别算法通过基于人工智能视觉分析技术的实时监测和判断,该算法能够高效准确地识别裸露土堆,并自动标注并反馈相关信息给管理人员。裸露土堆识别算法可以对识别到的裸露土堆进行数据记录和分析,为管理者提供数据支持,帮助改善土堆管理和防尘工作质量。裸露土堆识别算法一旦算法判断出土堆为裸露状态,会自动进行标注,并反馈相应信息给管理人员,提醒他们采取相应措施。