老人摔倒检测预警系统基于人工智能的视觉监控解决方案,老人摔倒检测预警系统通过分析监控摄像头捕捉到的视频流,自动识别和检测人员摔倒行为。当系统检测到摔倒事件时,会自动触发报警,并通知相关负责人,以便迅速采取行动。这种系统的核心在于其高精度的识别能力和快速响应机制,能够有效减少因摔倒导致的伤亡。一旦YOLOv7检测到摔倒行为,系统将进行进一步的行为分析,以确认摔倒事件的真实性。如果分析结果确认为真实摔倒,系统将自动触发报警,并通过网络或移动设备通知相关负责人。
YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
- 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
- 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
- Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
- Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
在现代社会,随着老龄化问题的加剧以及对工作安全和公共安全的日益关注,老人摔倒检测预警系统的需求日益增长。这类系统能够利用先进的AI视觉算法,通过现场监控摄像头自动识别人员摔倒行为,从而在养老院、医院、危险作业区域、地铁手扶梯/楼梯、老幼活动区、智能家居等复杂场景中发挥重要作用。本文将探讨基于YOLOv7和OpenCV的AI视觉算法在摔倒攀爬检测系统中的应用,以及其如何提高人工监管效果和保障人员生命安全。
# 检测类
class Detect(nn.Module):
stride = None # strides computed during build
export = False # onnx export
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(Detect, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
y = x[i].sigmoid()
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
z.append(y.view(bs, -1, self.no))
return x if self.training else (torch.cat(z, 1), x)
@staticmethod
def _make_grid(nx=20, ny=20):
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
老人摔倒检测预警系统通过结合YOLOv7和OpenCV的先进技术,为各种复杂场景提供了一种有效的安全监控解决方案。它不仅提高了人工监管的效果,还显著提升了人员生命安全的保障水平。老年人是摔倒的高风险群体,系统可以在养老院中部署,及时发现老人摔倒事件,减少因摔倒导致的伤亡。医院中的病人和医护人员在移动时可能发生摔倒,系统可以提供额外的安全保障。在建筑工地、化工厂等危险作业区域,系统可以监控工作人员的安全,及时发现摔倒事故。